A new model of ice friction helps scientists understand how glaciers flow

December 18, 2018

WASHINGTON, D.C., December 18, 2018 -- Since the early 20th century, nearly all of Earth's glaciers have been retreating or melting. Glaciers cover 10 percent of the planet's land area and contain 75 percent of our fresh water. Moreover, the water from melting glaciers accounts for nearly two-thirds of the observed rise in global sea levels. Despite the looming ecological consequences, glacier motion remains poorly understood because of a lack of research on how large ice masses sheer and flow in contact with bedrock.

The roughness of bedrock, the temperature of the ice-bed interface and the presence of water-filled cavities all affect friction and influence how the ice will flow. Studying these factors poses unique challenges -- remote radar sensing by satellites and aircraft can track glacial movement, but it can't peer through thousands of feet of ice to measure detailed properties of the ice and rock.

In a new paper in The Journal of Chemical Physics, from AIP Publishing, theoretical physicist Bo Persson of the Jülich Research Center in Germany describes a new model of ice friction that offers crucial insight into glacier flows.

Persson turned to previous studies of rubber surfaces that are either in stationary contact or sliding past each other. For glaciers, he examined factors such as bedrock and ice roughness, and the effect of regelation -- melting and freezing caused by local pressure fluctuations. "The pressure fluctuates because of the bedrock surface roughness," he explained. "If you have a big 'bump' on the bedrock, the ice pressure against the bump will be higher on the side where the ice moves against the bump" -- thus lowering ice's melting temperature.

"The most important contribution of my theory is that it describes accurately the formation of cavities during sliding, and shows that cavitation indeed occurs for sliding speeds typical of flowing glaciers," Persson said. For most thick glaciers -- like the polar ice caps -- the temperature between ice and the bedrock is close to the melting temperature of ice due to geothermal heating and frictional. As a result, the cavities are almost always filled by pressurized water.

The presence of this water at the ice-bedrock interface has two effects, Persson explained: It carries some of the weight of the overlying ice and it further lubricates the bedrock. "Both effects will reduce the ice friction," he said, which causes glaciers to flow faster. "The friction between glacier and the bedrock is of crucial importance for the flow of glaciers and for the prediction of the increase in the sea level due to the melting of the polar ice caps," said Persson.

"We ice sheet modelers need to resolve the base of ice sheets in our models better, which requires numerical methods that are not yet common for us," said glaciologist Angelike Humbert of the Alfred Wegener Institute in Bremerhaven, Germany, who works on ice-sheet modeling and the remote sensing of ice sheets and glaciers using satellites. "That's even more tricky when simulations still need to be fast enough to run simulations until the year 2100 or 2300. Bo's work reminds us of the key role played by the roughness of the bedrock, which is very challenging to observe with the required accuracy in airborne radar surveys."
-end-
The article, "Ice friction: Glacier sliding on hard randomly rough bed surface," is authored by Bo Persson. The article will appear in The Journal of Chemical Physics Dec. 18, 2018 (DOI: 10.1063/1.5055934). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5055934.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Glaciers Articles from Brightsurf:

Rock debris protects glaciers from climate change more than previously known
A new study which provides a global estimate of rock cover on the Earth's glaciers has revealed that the expanse of rock debris on glaciers, a factor that has been ignored in models of glacier melt and sea level rise, could be significant.

New 'law' to explain how glaciers flow over soft ground
Addressing a major source of uncertainty in glacier-flow models, researchers present a new slip law to describe glaciers sliding on soft, deformable material.

Melting glaciers will challenge some salmon populations and benefit others
A new Simon Fraser University-led study looking at the effects that glacier retreat will have on western North American Pacific salmon predicts that while some salmon populations may struggle, others may benefit.

How the ocean is gnawing away at glaciers
The Greenland Ice Sheet is melting faster today than it did only a few years ago.

Last remaining glaciers in the Pacific will soon melt away
The last remaining tropical glaciers between the Himalayas and the Andes will disappear in the next decade -- and possibly sooner -- due to climate change, a new study has found.

Drones help map Iceland's disappearing glaciers
Dr. Kieran Baxter from the University of Dundee has created composite images that compare views from 1980s aerial surveys to modern-day photos captured with the help of state-of-the-art technology.

Disappearing Peruvian glaciers
It is common knowledge that glaciers are melting in most areas across the globe.

New insight into glaciers regulating global silicon cycling
A new review of silicon cycling in glacial environments, led by scientists from the University of Bristol, highlights the potential importance of glaciers in exporting silicon to downstream ecosystems.

Tidewater glaciers: Melting underwater far faster than previously estimated?
A tidewater glacier in Alaska is melting underwater at rates upwards of two orders of magnitude greater than what is currently estimated, sonar surveys reveal.

Asia's glaciers provide buffer against drought
A new study to assess the contribution that Asia's high mountain glaciers make to relieving water stress in the region is published this week (May 29, 2019) in the journal Nature.

Read More: Glaciers News and Glaciers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.