Nav: Home

Graphene's magic is in the defects

December 18, 2018

BROOKLYN, New York, Thursday, December 13, 2018 - A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous and predictable properties by discovering how to engineer graphene structure on an atomic level.

Finely tuned electrochemical sensors (also referred to as electrodes) that are as small as biological cells are prized for medical diagnostics and environmental monitoring systems. Demand has spurred efforts to develop nanoengineered carbon-based electrodes, which offer unmatched electronic, thermal, and mechanical properties. Yet these efforts have long been stymied by the lack of quantitative principles to guide the precise engineering of the electrode sensitivity to biochemical molecules.

Davood Shahrjerdi, an assistant professor of electrical and computer engineering at NYU Tandon, and Roozbeh Kiani, an assistant professor of neural science and psychology at the Center for Neural Science, Faculty of Arts and Science, have revealed the relationship between various structural defects in graphene and the sensitivity of the electrodes made of it. This discovery opens the door for the precise engineering and industrial-scale production of homogeneous arrays of graphene electrodes. The researchers detail their study in a paper published today in the journal Advanced Materials.

Graphene is a single, atom-thin sheet of carbon. There is a traditional consensus that structural defects in graphene can generally enhance the sensitivity of electrodes constructed from it.  However, a firm understanding of the relationship between various structural defects and the sensitivity has long eluded researchers. This information is particularly vital for tuning the density of different defects in graphene in order to achieve a desired level of sensitivity.

"Until now, achieving a desired sensitivity effect was akin to voodoo or alchemy -- oftentimes, we weren't sure why a certain approach yielded a more or less sensitive electrode," Shahrjerdi said. "By systematically studying the influence of various types and densities of material defects on the electrode's sensitivity, we created a physics-based microscopic model that replaces superstition with scientific insight."

In a surprise finding, the researchers discovered that only one group of defects in graphene's structure -- point defects -- significantly impacts electrode sensitivity, which increases linearly with the average density of these defects, within a certain range. "If we optimize these point defects in number and density, we can create an electrode that is up to 20 times more sensitive than conventional electrodes," Kiani explained.

These findings stand to impact both the fabrication of and applications for graphene-based electrodes. Today's carbon-based electrodes are calibrated for sensitivity post-fabrication, a time-consuming process that hampers large-scale production, but the researchers' findings will allow for the precise engineering of the sensitivity during the material synthesis, thereby enabling industrial-scale production of carbon-based electrodes with reliable and reproducible sensitivity.

Currently, carbon-based electrodes are impractical for any application that requires a dense array of sensors: The results are unreliable due to large variations of the electrode-to-electrode sensitivity within the array. These new findings will enable the use of ultra-small carbon-based electrodes with homogeneous and extraordinarily high sensitivities in next-generation neural probes and multiplexed "lab-on-a-chip" platforms for medical diagnostics and drug development, and they may replace optical methods for measuring biological samples including DNA.
-end-
The paper, "Quantitative Principles for Precise Engineering of Sensitivity in Carbon-Based Electrochemical Sensors," is available at https://onlinelibrary.wiley.com/doi/10.1002/adma.201805752. The research team also includes NYU Tandon doctoral students Ting Wu and Abdullah Alharbi.

This research was supported by the National Science Foundation (NSFCMMI award 1728051), National Institute of Mental Health (R01MH109180), the Pew Charitable Trusts, and Simons Collaboration on the Global Brain.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country's foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

NYU Tandon School of Engineering

Related Graphene Articles:

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.