Nav: Home

Machine-learning research at OSU unlocking molecular cages' energy-saving potential

December 18, 2018

CORVALLIS, Ore. - Nanosized cages may play a big role in reducing energy consumption in science and industry, and machine-learning research at Oregon State University aims to accelerate the deployment of these remarkable molecules.

The porous organic cage molecules being studied at OSU are able to selectively capture gas molecules, potentially enabling huge energy savings in the myriad gas separations conducted in the chemical sector.

"These porous molecular solids are like sponges that soak up gases discriminately," said Cory Simon, assistant professor of chemical engineering and corresponding author of a study published in ACS Central Science.

Together, the separation and purification of chemical mixtures is responsible for more than 10 percent of the world's energy consumption.

Porous cage molecules have nanosized cavities intrinsic to their structure, and gas molecules are attracted to and trapped within these cavities via adsorption.

"But each cage adsorbs certain gases more readily than others, and this property potentially makes the cages useful for separating gas mixtures more energy-efficiently," Simon said.

However, there are thousands of these cage molecules that could be synthesized - to make even one of them and test its properties takes months in the lab - and hundreds of different chemical separations are required in industry; hence the need for a computational approach to sort through the possibilities and find the best molecule for the job at hand.

Simon exploited the idea that the shape of any given cavity is responsible for which gas molecules it most readily attracts.

Simon and students Arni Sturluson, Melanie Huynh and Arthur York employed an "unsupervised" machine-learning method to categorize and group together cage molecules based on their cavity shapes and, thus, adsorption properties.

Unsupervised means the computer did the learning about shape/property relationships on its own; it wasn't given any labels to instruct it.

"Just show the data to the algorithm, and it automatically finds patterns - structure - in the data," Simon said.

The researchers used a training dataset of 74 experimentally synthesized porous organic cage molecules that were each computationally scanned, resulting in a 3D "porosity" image of each similar to an image generated by a CT scan.

"On the basis of these 3D images, we took inspiration from a facial recognition algorithm, eigenfaces, to group together cages with similarly shaped cavities," he said. "Using the singular value decomposition, we encoded the 3D images of the cages into lower-dimensional vectors."

Simon explains the process using the analogy of people's faces.

"Imagine you were forced to map everyone's face onto a point in a two-dimensional scatter plot while preserving as much information as you can about the faces," he said. "So each face is described by just two numbers, and similar-looking faces are grouped close by in the scatter plot. Essentially, the singular value decomposition performed this encoding, but for porous cage molecules."

The research demonstrated that the learned encoding captures the salient features of the cavities of porous cages and can predict properties of the cages that relate to cavity shape.

"Our methods could be applied to learn latent representations of cavities within other classes of porous materials and of shapes of molecules in general," Simon said.
-end-


Oregon State University

Related Molecules Articles:

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.