Nav: Home

Interfacial chemistry improves rechargeability of Zn batteries

December 18, 2019

With strong interest in environmentally benign and e?cient resource utilization, green and safe battery systems are in demand and improving rechargeability is a goal. Since the surface chemistry of the solid-electrolyte interphase (SEI) is a critical factor governing the cycling life of rechargeable batteries, it is a key research focus.

Zn batteries (ZBs) are characterized by low cost, superior volumetric energy output and cost-effective raw materials, making them a promising candidate to meet the demand for rechargeable batteries. However, some characteristics of the Zn-electrolyte interface restrict the development of rechargeable ZBs and their application.

Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.

By manipulating the decomposition of a eutectic liquid with a peculiar anion-associated cation solvation structure, the researchers observed zinc ?uoride-rich organic/inorganic SEI on a Zn anode for the first time.

A combination of experimental and modeling investigations revealed that the presence of anion-complexing Zn species with markedly lowered decomposition energies contributed to the in-situ formation of the interphase.

"The protective interphase enables reversible and dendrite-free Zn plating/stripping even at high areal capacities. This is due to the fast ion migration coupled with high mechanical strength," said Prof. CUI.

With this interfacial design, the assembled Zn batteries exhibited excellent cycling stability with negligible capacity loss at both low and high rates.

In addition, coating the Zn surface with an artificial protective polyamide layer is easy to implement. The polyamide layer has all the desirable characteristics for supporting highly reversible Zn chemistry with enhanced cycling performance of Zn anodes at neutral pH, even at a high depth of discharge.

The study offers new insights into the rational regulation of Zn anodes and provides an unprecedented avenue for tackling the dilemmas raised by the intrinsic properties of multivalent metal anodes.
The study was published in Nature Communications.

Chinese Academy of Sciences Headquarters

Related Decomposition Articles:

Overcoming carbon loss from farming in peatlands
Miscanthus, willow found as good biomass crops to add carbon to vulnerable soils.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
RUDN University soil scientists found out how abandoned arable land restores
Soil scientists from RUDN University have found that the rate of accumulation of organic carbon in wild, cultivated, and abandoned soils depends mainly on the type and composition of the soil, and, to a lesser extent, on the time elapsed since it was no longer cultivated.
Circulation of water in deep Earth's interior
Phase H is a hydrous mineral that is considered to be an important carrier of water into deep Earth.
Hard-working termites crucial to forest, wetland ecosystems
Soil bedding increases microbial and termite decomposition activity
CCNY physicists use mathematics to trace neuro transitions
Unique in its application of a mathematical model to understand how the brain transitions from consciousness to unconscious behavior, a study at The City College of New York's Benjamin Levich Institute for Physico-Chemical Hydrodynamics may have just advanced neuroscience appreciably.
Researchers reveal mechanisms for regulating temperature sensitivity of soil organic matter decompos
Recently, a research team led by Prof. YANG Yuanhe from the Institute of Botany elucidated the mechanisms underlying vertical variations in Q10. Based on the natural gradient of soil profile in Tibetan alpine grasslands, the team collected soil samples at two soil depths and then conducted long-term incubation, SOM decomposition modeling and manipulative experiments.
New research aims to help catch child killers
Violent crimes against children are especially abhorrent. New research will help law enforcement learn more from juvenile and infant remains in order to help bring perpetrators to justice.
A biofuel for automated heat generation
Biomass is an obvious resource for energy generation with a lower environmental impact.
A key to climate stabilization could be buried deep in the mud, FSU researchers suggest
While scientists fear that rising temperatures could unleash a 'bomb' of carbon from Earth's soil carbon reservoirs, a new FSU study suggests these reservoirs might actually be more stable than predicted.
More Decomposition News and Decomposition Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at