Different mutations in a single gene can wreak many types of havoc in brain cells

December 18, 2019

New York, NY (December 19, 2019) -- Mount Sinai researchers have found that different mutations in a single gene can have myriad effects on a person's health, suggesting that gene therapies may need to do more than just replenish the missing or dysfunctional protein the gene is supposed to encode, according to a study published in Nature Genetics in November.

"You have to fully understand the mutation to understand how to fix it," said Kristen Brennand, PhD, Associate Professor of Genetics and Genomic Sciences, Neuroscience, and Psychiatry at the Icahn School of Medicine at Mount Sinai, and together with Gang Fang, PhD, Associate Professor of Genetics and Genomic Sciences, one of the lead authors of the study. The two researchers "have been collaborating for seven years on multiple projects that combine our complementary expertise in biology and informatics," said Dr. Fang.

The collaboration originated from Dr. Brennand's interest in the function of the gene neurexin-1, or NRXN1, in psychiatric disorders and Dr. Fang's technology expertise in the use of sophisticated techniques for analyzing different forms of individual genes. Much of the work was led by Shijia Zhu, PhD, formerly a postdoctoral fellow in Dr. Fang's lab, and Erin Flaherty, PhD, a former graduate student in Dr. Brennand's lab.

Patients with schizophrenia, autism, and bipolar disorder sometimes carry mutations in NRXN1. Until now, NRXN1 "had largely been studied only in mice. And, from the mouse studies, we know there are over 300 splice isoforms," said Dr. Brennand. "That means that this one gene makes 300 different proteins in the mouse."

The team set out to understand how NRXN1 functions in typical human neurons, and how different mutations might impact cellular function.

Dr. Brennand and her team started with skin samples from several patients at The Mount Sinai Hospital who had mental health diagnoses and carried mutated forms of the gene. They used these samples, as well as samples from participants without these diagnoses, to culture human induced pluripotent stem cells (hiPSCs)--cells with the ability to grow into any cell in the body.

The cells were then induced to grow into neurons. In the cells that came from patients with mutations in NRXN1, the scientists noted differences in the shape and electrical activity of the neurons as well as the rates at which they matured.

But that wasn't all. All people have two copies of the gene. If there is a mutation, it is usually only in one of those copies. The normal, unmutated gene still produces the healthy protein, but the mutated copy is unable to produce any protein, meaning the individual produces less of the protein than is necessary for normal function. The researchers figured that introducing more of the healthy protein would rescue the neurons, but this wasn't always the case.

Some of the mutations cause the second copy of the gene to produce a separate, mutated version of the protein. The researchers found that these mutated proteins may interfere with the action of the healthy protein. The team found that even cells that could produce enough of the healthy protein that they should have functioned normally would suffer if they were also exposed to a mutant form of the protein--and different mutations led to different problems.

"Functionally, these mutant proteins seem to have a dominant negative effect," said Dr. Brennand. "Overexpression of a single mutant protein in healthy neurons is enough to cause them to fire irregularly."

The study was small, and the gene variants the team studied are rare. In the future it will be important to tease out exactly how the variants impact function: do developmental perturbations lead to later differences in activity or vice versa? But both Dr. Brennand and Dr. Fang emphasized that the overall message is crucial for anyone hoping to use genetics to personalize medicine.

"I went into this really naively, thinking that all patients with deletions in this gene would probably show the same effect," she said. "What we learned is that if you want to move towards precision medicine, it matters not just what genes are impacted, but how they're mutated as well."
About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest integrated delivery system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai's vision is to produce the safest care, the highest quality, the highest satisfaction, the best access and the best value of any health system in the nation. The Health System includes approximately 7,480 primary and specialty care physicians; 11 joint-venture ambulatory surgery centers; more than 410 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools", aligned with a U.S. News & World Report's "Honor Roll" Hospital, No. 12 in the nation for National Institutes of Health funding, and among the top 10 most innovative research institutions as ranked by the journal Nature in its Nature Innovation Index. This reflects a special level of excellence in education, clinical practice, and research. The Mount Sinai Hospital is ranked No. 14 on U.S. News & World Report's "Honor Roll" of top U.S. hospitals; it is one of the nation's top 20 hospitals in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Geriatrics, Gynecology, Nephrology, Neurology/Neurosurgery, and Orthopedics in the 2019-2020 "Best Hospitals" issue. Mount Sinai's Kravis Children's Hospital also is ranked nationally in five out of ten pediatric specialties by U.S. News & World Report. The New York Eye and Ear Infirmary of Mount Sinai is ranked 12th nationally for Ophthalmology, Mount Sinai St. Lukes and Mount Sinai West are ranked 23rd nationally for Nephrology and 25th for Diabetes/Endocrinology, and Mount Sinai South Nassau is ranked 35th nationally for Urology. Mount Sinai Beth Israel, Mount Sinai St. Luke's, Mount Sinai West, and Mount Sinai South Nassau are ranked regionally.

For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.