New coating hides temperature change from infrared cameras

December 18, 2019

MADISON, Wis. -- An ultrathin coating developed by University of Wisconsin-Madison engineers upends a ubiquitous physics phenomenon of materials related to thermal radiation: The hotter an object gets, the brighter it glows.

The new coating -- engineered from samarium nickel oxide, a unique tunable material -- employs a bit of temperature trickery.

"This is the first time temperature and thermal light emission have been decoupled in a solid object. We built a coating that 'breaks' the relationship between temperature and thermal radiation in a very particular way," says Mikhail Kats, a UW-Madison professor of electrical and computer engineering. "Essentially, there is a temperature range within which the power of the thermal radiation emitted by our coating stays the same."

Currently, that temperature range is fairly small, between approximately 105 and 135 degrees Celsius. With further development, however, Kats says the coating could have applications in heat transfer, camouflage and, as infrared cameras become widely available to consumers, even in clothing to protect people's personal privacy.

Kats, his group members, and their collaborators at UW-Madison, Purdue University, Harvard University, Massachusetts Institute of Technology and Brookhaven National Laboratory published details of the advance this week in the Proceedings of the National Academy of Sciences.

The coating itself emits a fixed amount of thermal radiation regardless of its temperature. That's because its emissivity -- the degree to which a given material will emit light at a given temperature -- actually goes down with temperature and cancels out its intrinsic radiation, says Alireza Shahsafi, a doctoral student in Kats' lab and one of the lead authors of the study.

"We can imagine a future where infrared imaging is much more common, negatively impacting personal privacy," Shahsafi says. "If we could cover the outside of clothing or even a vehicle with a coating of this type, an infrared camera would have a harder time distinguishing what is underneath. View it as an infrared privacy shield. The effect relies on changes in the optical properties of our coating due to a change in temperature. Thus, the thermal radiation of the surface is dramatically changed and can confuse an infrared camera."

In the lab, Shahsafi and fellow members of Kats' group demonstrated the coating's efficacy. They suspended two samples -- a coated piece of sapphire and a reference piece with no coating -- from a heater so that part of each sample was touching the heater and the rest was suspended in much cooler air. When they viewed each sample with an infrared camera, they saw a distinct temperature gradient on the reference sapphire, from deep blue to pink, red, orange and almost white, while the coated sapphire's thermal image remained largely uniform.

A team effort was critical to the project's success. Purdue collaborator Shriram Ramanathan's group synthesized the samarium nickel oxide and performed detailed materials characterization. Colleagues at MIT and at Brookhaven National Laboratory used the bright light of a particle-accelerating synchrotron to study the coating's atomic-level behavior.
Shahsafi and Patrick Roney (whose employer, Sandia National Laboratory, funded his master's degree under Kats) led the experimental work, which also led Kats' postdoctoral researcher Yuzhe Xiao to author additional papers describing their very precise measurement techniques. Several other students in Kats' group characterized the coating through microscopy and other methods.

Kats is the Dugald C. Jackson Faculty Scholar in Electrical and Computer Engineering at UW-Madison. Other authors on the PNAS paper include Yuzhe Xiao, Chenghao Wan, Raymond Wambold, Jad Salman and Zhaoning Yu of UW-Madison, You Zhou of Harvard, Zhen Zhang of Purdue, Jiarui Li and Riccardo Comin of MIT, and Jerzy Sadowski of Brookhaven National Laboratory.

This research was supported by grants from the Office of Naval Research (N00014-16-1-2556) and the National Science Foundation (ECCS-1750341).

Renee Meiller, 608-262-2481,



University of Wisconsin-Madison

Related Temperature Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

A drop in temperature
In the nearly two centuries since German physician Carl Wunderlich established 98.6°F as the standard ''normal'' body temperature, it has been used by parents and doctors alike as the measure by which fevers -- and often the severity of illness -- have been assessed.

Kitchen temperature supercurrents from stacked 2D materials
A 'stack' of 2D materials could allow for supercurrents at ground-breakingly warm temperatures, easily achievable in the household kitchen.

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.

Chemical thermometers take temperature to the nanometric scale
Scientists from the Coordination Chemistry Laboratory and Laboratory for Analysis and Architecture of Systems, both of the CNRS, recently developed molecular films that can measure the operating temperature of electronic components on a nanometric scale.

How reliable are the reconstructions and models for past temperature changes?
Understanding of climate changes during the past millennia is crucial for the scientific attribution of the current warming and the accurate prediction of the future climate change.

New method measures temperature within 3D objects
University of Wisconsin-Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography.

Who takes the temperature in our cells?
The conditions in the environment are subject to large fluctuations.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Read More: Temperature News and Temperature Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to