Topological materials for information technology offer lossless transmission of signals

December 18, 2019

New effects in solid-state physics are often first discovered at temperatures near absolute zero (0 Kelvin or -273 °C). Further research can then determine whether and how these phenomena can be induced at room temperature as well. So it was that superconductivity was initially observed in mercury below 4 Kelvin more than 100 years ago. Today, there are many high-temperature superconductors that conduct electrical current without resistive losses at temperatures as high as 138 Kelvin or even 200 Kelvin (the record held by H2S).

The Quantised Anomalous Hall Effect (QAHE) was observed for the first time in a magnetically doped topological insulator below 50 millikelvin in 2013. Similar to superconductivity, this effect allows lossless charge transport within thin edge channels of the samples. Meanwhile, it has been achieved to increase the maximum temperature at which the effect can be observed up to about 1 Kelvin.

However, based on theoretical considerations, the QAHE should occur at much higher temperatures. So it is a mystery as to why this does not happen. One critical parameter is known as the magnetic energy gap of the sample, but no one has ever measured it before. The larger this gap, the more stable the effect should be towards the influence of temperature.

An international team headed by HZB physicist Prof. Dr. Oliver Rader and Prof. Dr. Gunther Springholz from the University of Linz has achieved a breakthrough. By photoelectron spectroscopy with synchrotron radiation of BESSY II they have been able to measure the energy gap in such a sample for the first time. To accomplish this, the equipment named ARPES1cube was used to reach extremely low temperatures as well as the new spin-resolving capability of the Russian-German Laboratory at BESSY II. Surprisingly, the gap was actually five times larger than theoretically predicted.

The scientists also found a simple reason for this result: "We now know that manganese doping does not happen in a disordered manner. On the contrary, it causes stratification known as a superstructure in the material - layers much like a puff pastry", explains Springholz. "By adding a few per cent of manganese, alternating units of seven and five layers are created. This causes the manganese to be preferentially contained within the seven-layer units and thus can generate the energy gap much more effectively."

Rader says in retrospect that researchers' imaginations in using dopants has not extended far enough to date. They used trivalent elements such as chromium and vanadium that have magnetic characteristics to substitute for the bismuth in bismuth telluride (Bi2Te3), with the dopant atoms in a disordered state. The reason for this seemed very convincing: trivalent magnetic elements contribute three electrons to chemical bonds and their chemical valence leads these elements to the bismuth sites. With manganese, the situation is different. Since manganese is bivalent, it does not really fit well in the bismuth sites. That is apparently why the system becomes radically restructured and creates a new double layer of atoms in which manganese can be bivalently incorporated. "In this way, a structure is created - in a self-organized way - in which manganese can produce the large magnetic energy gap", explains Rader.

If these self-organisation phenomena are exploited in specific ways, then completely new configurations can emerge for magnetic topological materials, according to Springholz. In principle, the gap that has now been measured is already so large that it should enable construction of a near-room-temperature QAHE from appropriate components. However, other parameters still need to be improved. A magnetic topological insulator like this in combination with an ordinary superconductor could also permit the realisation of a quantum processing unit (Qbit) for a quantum computer.
-end-


Helmholtz-Zentrum Berlin für Materialien und Energie

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.