Thawing permafrost affecting northern Alaska's land-to-ocean river flows

December 18, 2019

AMHERST, Mass. - A new analysis of the changing character of runoff, river discharge and other hydrological cycle elements across the North Slope of Alaska reveals significant increases in the proportion of subsurface runoff and cold season discharge, changes the authors say are "consistent with warming and thawing permafrost."

First author and lead climate modeler Michael Rawlins, associate professor of geosciences at the University of Massachusetts Amherst and associate director of its Climate Systems Research Center, says warming is expected to shift the Arctic from a surface water-dominated system to a groundwater-dominated system, with deeper water flow paths through newly thawed soils.

"Our model estimates of permafrost thaw are consistent with the notion that permafrost region ecosystems are shifting from a net sink to a net source of carbon," he says.

Freshwater and riverborne nutrients, mainly dissolved organic carbon, are transported to coastal estuaries and lagoons that lie at the land-sea interface, he explains. Field measurements of river discharge and other hydrological cycle elements in this region are sparse, which requires a modeling approach to quantify the land-ocean flows and their changing character. Details of this investigation into Arctic watersheds between Utqiagvik (formerly Barrow) and just west of the Mackenzie River over the period 1981-2010 are in the current issue of the open access journal, The Cryosphere.

Rawlins explains, "Our model includes a state-of-the-art simulation of soil freeze-thaw cycles that allows us to better understand how permafrost thaw is influencing the magnitude and timing of hydrological flows. Our results point to greater impacts of warming across the Brooks Range, including increasing cold season (November to April) river discharge and a higher proportion of subsurface runoff."

Further, the changing terrestrial inflows may be influencing food web structure within the lagoons, he adds. "Local native communities rely on the fish and other resources in the lagoon ecosystem for their subsistence lifestyle. More than 150 species of migratory birds and waterfowl are supported by the region's food webs, and the lagoons are a rich source of fish for native communities." In particular, Barrow, Nuiqsut and Kaktvik hunters and residents rely on the high productivity of the Beaufort Lagoon systems to support fish and bird populations they live on, Rawlins points out.

In this study, the Permafrost Water Balance Model was validated against available measurements of river discharge and water held in the snow pack. Rawlins and colleagues are developing models and leveraging in situ and remote sensing measurements to better understand flows into the Beaufort Lagoons and predict how permafrost thaw and water cycle intensification will affect lagoon ecosystem dynamics in the future.

The researchers observed significant increases in cold season discharge, such as 134% of the long-term average for the North Slope, and 215% in the Colville River basin, for example. They report a significant increase in the ratio of subsurface runoff to total runoff for the region and for 24 of the 42 study basins, with the change most prevalent across the northern foothills of the Brooks Range. They also observed a decline in terrestrial water storage, which they attribute to losses in soil ice that outweigh gains in soil liquid water storage. The timing of peak spring freshet discharge, the flow of snowmelt into the sea, also has shifted earlier by 4.5 days.

The authors say findings have implications for water, carbon and nutrient cycling in coastal ecosystems and beyond. North Slope rivers are a primary source of new organic nutrients to the Beaufort Sea lagoons, with half of the annual freshwater export occurring in a two-week window following snowmelt in spring. As the climate warms, carbon that has been sequestered for thousands of years in permafrost soils thaws and is mobilized and transferred to river systems, with some emitted to the atmosphere as carbon dioxide and methane, accelerating warming.
This study is part of a multi-institution grant from National Science Foundation's Long-term Ecological Research program and Office of Polar Programs led by scientists at the University of Texas at Austin. In addition to Rawlins, other project scientists are investigating how processes such as shoreline erosion and sea ice dynamics are influencing coastal ecosystem function in this region.

University of Massachusetts Amherst

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to