Simple and cost-effective extraction of rare metals from industrial waste

December 18, 2020

Kanazawa, Japan - Many rare metals are in scarce supply, yet demand for use in electronics, medical instrumentation, and other purposes continues to increase. As waste, these metals pollute the environment and harm human health. Ideally, we would recycle the metals from waste for reuse. Unfortunately, current recycling methods are some combination of complex, expensive, toxic, wasteful, and ultimately inefficient.

In an upcoming study in Chemical Engineering Journal, researchers from Kanazawa University report a major improvement in recovering silver and palladium ions from aqueous acidic waste. Recovery of the metals in elemental, metallic form is straightforward--simply burn the extraction material and collect the remaining metal after further heating.

The researchers chemically modified ultrasmall particles of cellulose, an abundant and nontoxic biopolymer, to selectively adsorb silver and palladium ions at room temperature. Adsorption was nearly complete at acidic pH with acid concentrations of around 1 to 13 percent by volume. These are reasonable experimental conditions.

"The adsorbent selectively chelated the soft acid silver and palladium cations," explains lead author Foni Biswas. "Of the 11 competing base metals we tested, only copper and lead cations were also adsorbed, but we removed them with ease."

Maximum metal ion adsorption was fast--e.g., an hour for silver. Maximum adsorption commonly requires many hours with other approaches.

"Intraparticle diffusion did not hinder adsorption, which is an endothermic, spontaneous chemical process," explains senior author Hiroshi Hasegawa. "Maximum metal adsorption capacities--e.g., 11 mmol/g for silver--are substantially higher than that reported in prior research."

After adsorption, the researchers simply incinerated the cellulose particles to obtain elemental silver or palladium powder. Subsequent higher-temperature incineration converted the powder into pellets. Cyanide or other toxic extractants were not required. Spectroscopic analyses indicated that the final metal pellets were in metallic rather than oxide form.

"We removed nearly all of the silver and palladium from real industrial waste samples," says lead author Biswas. "Obtaining pure and elemental metals proceeded as smoothly as in our trial runs."

Palladium and silver are valuable metals yet natural supplies are increasingly limited. Future needs require that we recycle the metals that we already have in a practical manner. The research reported here is an important development that will avoid supply and distribution difficulties that will only increase in the coming years.
-end-


Kanazawa University

Related Silver Articles from Brightsurf:

A spicy silver lining
Researchers David Omar Oseguera-Galindo and Eden Oceguera-Contreras, both of the University of Guadalajara, Mexico, and Dario Pozas-Zepeda of the University of Colima, Mexico, recently studied the effect of habanero pepper in the synthesis of silver nanoparticles.

Research sheds light on how silver ions kill bacteria
The antimicrobial properties of silver have been known for centuries.

Epigenetic inheritance: A silver bullet against climate change?
The rapid pace of climate change threatens all living species.

Inventing the world's strongest silver
A team of scientists has made the strongest silver ever--42 percent stronger than the previous world record.

Borophene on silver grows freely into an atomic 'skin'
Borophene has a nearly perfect partner in a form of silver that could help the trendy two-dimensional material grow to unheard-of lengths.

Little heaps of silver, all wrapped up
Nanoclusters are little 'heaps' of a few atoms that often have interesting optical properties and could become useful probes for imaging processes in areas such as biomedicine and diagnostics.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

Gold for silver: A chemical barter
From effective medicines to molecular sensors to fuel cells, metal clusters are becoming fundamentally useful in the health, environment, and energy sectors.

No silver bullet for helping the Great Barrier Reef
Using a combination of advanced satellite imaging and over 20 years of coral monitoring across the Reef, a team of researchers from Dalhousie University, ARC Centre of Excellence for Coral Reef Studies at James Cook University (Coral CoE), the University of Adelaide and Lancaster University in the UK has found that chronic exposure to poor water quality is limiting the recovery rates of corals across wide swaths of the Great Barrier Reef.

A silver lining like no other
New technology from the University of South Australia is revolutionizing safe vaccination practices through antibacterial, silver-loaded dissolvable microneedle patches, which not only sterilize the injection site to inhibit the growth of bacteria, but also physically dissolve after administration.

Read More: Silver News and Silver Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.