World's first transmission of 1 Petabit/s using a single-core multimode optical fiber

December 18, 2020


A group of researchers from the Network System Research Institute of the National Institute of Information and Communications Technology (NICT, Japan) led by Georg Rademacher, NOKIA Bell Labs (Bell Labs, USA) led by Nicolas K. Fontaine and Prysimian Group (Prysimian, France) led by Pierre Sillard succeeded in the world's first transmission exceeding 1 petabit per second in a single-core multi-mode optical fiber. This increases the current record transmission in a multi-mode fiber by a factor of 2.5.

To date, transmission experiments in optical fibers supporting large number of modes was limited to small optical bandwidths. In this study, we demonstrated the possibility of combining highly spectral efficient wideband optical transmission with an optical fiber guiding 15 fiber modes that had a cladding diameter in agreement with the current industry standard of 0.125 mm. This was enabled by mode multiplexers and an optical fiber that supported wideband transmission of more than 80 nm over a distance of 23 km. The study highlights the large potential of single-core multi-mode fibers for high capacity transmission using fiber manufacturing processes similar to those used in the production of standard multi-mode fibers.

The results of this study were accepted for the post-deadline session at the 46th European Conference on Optical Communication (ECOC 2020).


Over the past decade, intensive research was carried out worldwide to increase the data rates in optical transmission systems using space-division multiplexing in order to accommodate the exponentially increasing data transmission requirements. Compared to multi-core optical fibers, multi-mode fibers can support a higher spatial-signal-density and are easier to manufacture. However, using multi-mode fibers for high capacity space-division multiplexed transmission requires the use of computationally intensive digital signal processing. These requirements increase with the number of transmission modes and realizing transmission systems supporting large number of fiber modes is an active field of research.


At NICT, a transmission experiment was designed and carried out that utilized the transmission fiber made by Prysmian and mode multiplexers developed by Bell Labs. A wideband transceiver subsystem was developed at NICT to transmit and receive several hundred highly spectral efficient WDM channels of high signal quality. The novel mode multiplexers were based on a multi-plane light conversion process where the light of 15 input fibers was reflected multiple times on a phase plate to match the modes of the transmission fiber. The transmission fiber was 23 km long and had a graded-index design. It was based on existing multi-mode fiber designs that were optimized for wideband operation and had a cladding diameter of 0.125 mm and a coating diameter of 0.245 mm, both adhering to the current industry standard. The transmission system demonstrated the first transmission exceeding 1 petabit per second in a multi-mode fiber increasing the current record demonstration by a factor of 2.5.

When increasing the number of modes in a multi-mode fiber transmission system, the computational complexity of the required MIMO digital signal processing increases. However, the used transmission fiber had a small modal delay, simplifying the MIMO complexity and maintained this low modal delay over a large optical bandwidth. As a result, we could demonstrate the transmission of 382 wavelength channels, each modulated with 64-QAM signals. The success of large-capacity transmission using a single-core multimode optical fiber, which has a high spatial signal density and easy manufacturing technology, is expected to advance high-capacity multimode transmission technology for future high capacity optical transmission systems.

Future Prospects

In the future, we would like to pursue the possibility of extending the distance of large-capacity multi-mode transmission and integrating it with multi-core technology to establish the foundation of future optical transmission technology with large capacity.

The paper on the results of this experiment was published at the 46th European Conference on Optical Communication (ECOC2020, December 6th - 10th 2020), which is one of the largest international conferences related to optical fiber communication. It was planned to be held in Brussels, Belgium but had to be conducted virtually due to the Novel Corona Virus epidemic. The paper received a very high evaluation from and was adopted for presentation in a special session for the latest research (Post Deadline Paper) that took place on the 10th of December.

National Institute of Information and Communications Technology (NICT)

Related Optical Fiber Articles from Brightsurf:

Graphene controls laser frequency combs in fiber
Tuning laser frequency combs electrically can enrich diversity of comb outputs and help to stabilize them actively.

Asymmetric optical camouflage: Tuneable reflective color accompanied by optical Janus effect
Deliverying viewing-direction sensitive information display across single sheet of transreflective window is introduced.

Revealing the reason behind jet formation at the tip of laser optical fiber
When an optical fiber is immersed in liquid, a high temperature, high speed jet is discharged.

Rochester researchers document an optical fiber beyond compare
A new anti-resonant hollow core optical fiber produces a thousand times less ''noise'' interfering with signals it transmits compared to the single-mode fibers now widely used.

Brazilian researcher creates an ultra-simple inexpensive method to fabricate optical fiber
The conventional process requires costly large-scale equipment. The novel method can be executed in a single step by a device no larger than a microwave oven.

How bacteria adhere to fiber in the gut
Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut.

Brazilian researchers develop an optical fiber made of gel derived from marine algae
Edible, biocompatible and biodegradable, these fibers have potential for various medical applications.

A survey on optical memory and optical RAM technologies
The ability to store with light and built promising optical memories has been an intriguing research topic for more than two decades.

All-fiber optical wavelength converter
Wavelength conversion in all-fiber structure has extensive applications in new fiber-laser sources, signal processing, and multi-parameter sensors.

New design could make fiber communications more energy efficient
Researchers say a new discovery on a US Army project for optoelectronic devices could help make optical fiber communications more energy efficient.

Read More: Optical Fiber News and Optical Fiber Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to