Early learning leaves lasting changes in brain, Stanford owl study shows

December 19, 2004

STANFORD, Calif. - Educational Christmas toys can leave a mark on more than just your checkbook - they can also leave a permanent imprint on a child's brain. That's according to a Stanford University School of Medicine study in owls showing that early learning experiences forever change the brain's structure.

Previous work by study leader Eric Knudsen, PhD, professor and chair of neurobiology, showed that young owls could quickly pick up new skills that leave older owls baffled. What's more, once the young owls learn a new skill they can easily pick it back up as an adult.

"This work shows the importance of investing in childhood experiences," said Knudsen, who also holds the Edward C. and Amy H. Sewall Professorship. "Early learning can have long lasting effects on the architecture of the brain."

Knudsen's new work, published Dec. 19 in the online edition of Nature Neuroscience, relies on a well-understood region of an owl's brain. This area creates a spatial map out of the sounds an owl hears, such as the squeaking of a mouse or some rustling in the leaves. The owl then uses that map to know precisely where to hunt for dinner.

In his work, Knudsen and graduate student Brie Linkenhoker put glasses on the owls that shift the world to one side. When the owl first peers through the new specs, a squeaking mouse located off to the side appears to be straight ahead. This confuses the owl and allows its prey to escape.

The hungry owl solves this problem by learning a new auditory map that matches the shifted visual map. It then uses this new map to successfully capture its prey. When Knudsen removes the glasses the owls shift back to the original map of the world. After the human equivalent of many years, those educated owls can once again adjust to the same world-shifting glasses from which they learned as juveniles.

Knudsen, Linkenhoker and graduate student Christina von der Ohe wondered how educated animals held on to their learning. They thought that the neurons might make new connections that remained intact in adult animals. They turned out to be right.

Neurons in the mapping part of the brain form connections with a completely new group of neurons in the brain region that links those noises with the visual world. Adult owls that had learned to work with the glasses as youths had both the normal connections and the shifted connections. Those extra connections meant that the animals could easily relearn, even as adults, to work with the glasses.

Knudsen said different parts of the brain lose the ability to make large-scale changes in connections at different rates. "It's a trade-off between reliability and flexibility," he said. Areas of the brain that need to be reliable in adults, such as the ability to analyze the world or find prey, stop making major structural changes early in life, leaving the adult with a stable map. Other parts of the brain, such as those involved in learning and memory, remain more open to changes throughout life.

This work shows that it's not just the ability to do math or read books that can help a child when they grow up. Those brain regions that help sense and interpret the world are most affected by early childhood experiences. "These have a huge impact on higher functions in later life," Knudsen said.

Toys that beep, crinkle, feel soft, look interesting or require poking and prodding are all part of shaping a child's brain for future work.
-end-
Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Stanford University Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.