Scientists close in on genes responsible for Parkinson's disease

December 19, 2005

Scientists have identified 570 genes that act abnormally during the development of Parkinson's Disease, a finding which could help doctors predict the likelihood of it developing, and provide targets for new treatments.

The research published in Neurogenetics, by the team from Imperial College London and the University of Liege, Belgium, uses microarrays to analyse brains from Parkinson's patients. Microarrays are laboratory chips able to pick out which genes are active when different processes are occurring in the brain. When they analysed brains from people with Parkinson's, they found that out of all 25,000 human genes, regulation of 570 was highly abnormal in Parkinson's brains compared with non-diseased brains. This is the first study on Parkinson's disease where all human genes were studied.

The researchers analysed 23 brains from recently deceased patients, 15 affected by Parkinson's and 8 control brains. The majority of brains were provided by the UK Parkinson's Disease Society Tissue Bank at Imperial College London.

Dr Linda Moran from Imperial College London and one of the authors of the paper, said: "This research shows there are a considerable number of genes associated with the development of Parkinson's, potentially providing new clues for how to treat this disease. Now that we can identify these genes it may be possible to develop new therapies to help the increasing numbers of Parkinson's patients."

The team, led by Professor Manuel Graeber, analysed two parts of the brain which are affected by neurodegeneration in Parkinson's; the substantia nigra in the mid-brain, and the cerebral cortex. They were able to eliminate around 15,000 genes from any role in Parkinson's, as they were not found to be active in the substantia nigra, the part of the brain most affected by Parkinson's.

Dawn Duke, MS, from Imperial College London, and one of the authors of the paper said: "In addition to identifying those genes linked with the development of Parkinson's, this research has also shown that many of these genes were especially active in Parkinson's brains. By limiting the activity of these genes, we may be able to control or even stop the development of Parkinson's."
-end-
The study was funded by the UK Parkinson's Disease Society.

Imperial College London

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.