Universe's oldest objects emerge from the background

December 19, 2006

The deepest reaches of space are permeated by a cloak of infrared radiation, an uneven energy swath generated by long-dead objects from the early universe.

Now, researchers have teased apart overlapping signals from that cosmic infrared background, building upon an earlier study to show that uneven patches of energy may actually be clusters of the first objects to emerge from the Big Bang.

The astronomers believe the objects are either extremely bright stars more than 1,000 times more massive than our sun, or quasars, large black holes that consume enormous amounts of gas and debris and re-emit the materials in almost unparalleled bursts of energy. If the patches are star clusters, they may be the first galaxies, smaller than most known galaxies yet containing a mass on the scale of 1 million suns.

With a grant from the National Science Foundation, researchers studied archival data from the calibration of the NASA Spitzer telescope and conducted several stages of cleaning to remove signals from more recent galaxies and other objects to get to the underlying signals.

"Observing the cosmic infrared background is like watching distant fireworks from within a brightly lit city," said lead author Alexander Kashlinsky of NASA's Goddard Space Flight Center in Greenbelt, Md. "It's as if we have turned off the city lights one by one to see the bursts more clearly. While we can't resolve each spark in the fireworks, we can see the large scale structures and their glow."

The new study added observations of four regions of the night sky, two from each hemisphere, to data the telescope collected during a calibration last year. The new observations, with exposure times of up to 25-26 hours per pixel, peered four times deeper into the universe than the earlier effort and greatly expanded the observation area.
-end-
Media Contacts:
Whitney Clavin, Jet Propulsion Laboratory, (818) 354-4673, Whitney.Clavin@jpl.nasa.gov
Gordon Squires, Spitzer Science Center, (626) 395-3121, squires@ipac.caltech.edu

Kashlinsky, Richard Arendt, John Mather and S. Harvey Moseley all from Goddard, will publish their findings in two papers in the Jan. 1, 2007, Astrophysical Journal. Co-author Mather shared the 2006 Nobel Prize for Physics for work on another form of background radiation, the cosmic microwave background.

The research was supported by NSF award AST-0406587 and NASA grant Spitzer NM0710076. Science support to NASA Goddard is supplied by Science Systems and Applications, Inc.

Additional information, illustrations and animations are available in the Jet Propulsion Laboratory press release at: http://www.spitzer.caltech.edu/Media/releases/ssc2006-22/

NSF-PR 06-175

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.58 billion. NSF funds reach all 50 states through grants to nearly 1,700 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes nearly 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, MyNSF (formerly the Custom News Service). To subscribe, visit http://www.nsf.gov/mynsf/ and fill in the information under "new users".

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

National Science Foundation

Related Universe Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

Gravity causes homogeneity of the universe
Gravity can accelerate the homogenization of space-time as the universe evolves.

Seeing the universe through new lenses
A new study by an international team of scientists revealed hundreds of new strong gravitational lensing candidates based on a deep dive into data collected for a US Department of Energy-supported telescope project in Arizona called the Dark Energy Spectroscopic Instrument.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

This is how a 'fuzzy' universe may have looked
Scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter.

And then there was light: looking for the first stars in the Universe
Astronomers are closing in on a signal that has been travelling across the Universe for 12 billion years, bringing them nearer to understanding the life and death of the very earliest stars.

AI learns to model our Universe
An international team has used AI to create a 3D simulation of the Universe.

New voyage to the universe from DESHIMA
Researchers in Japan and the Netherlands jointly developed an originative radio receiver DESHIMA (Deep Spectroscopic High-redshift Mapper) and successfully obtained the first spectra and images with it.

A peek at the birth of the universe
The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth.

Exactly how fast is the universe expanding?
The collision of two neutron stars (GW170817) flung out an extraordinary fireball of material and energy that is allowing a Princeton-led team of astrophysicists to calculate a more precise value for the Hubble constant, the speed of the universe's expansion.

Read More: Universe News and Universe Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.