Elevated carbon dioxide changes soil microbe mix below plants

December 19, 2007

UPTON, NY - A detailed analysis of soil samples taken from a forest ecosystem with artificially elevated levels of atmospheric carbon dioxide (CO2) reveals distinct changes in the mix of microorganisms living in the soil below trembling aspen. These changes could increase the availability of essential soil nutrients, thereby supporting increased plant growth and the plants' ability to "lock up," or sequester, excess carbon from the atmosphere. The research will be published online this week in the journal Environmental Microbiology.

"These changes in soil biota are evidence for altered interactions between trembling aspen trees and the microorganisms in the surrounding soil," says Daniel (Niels) van der Lelie, a biologist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, who led the research. "This supports the idea that greater plant detritus production under elevated CO2 has altered microbial community composition in the soil. Understanding the effect these microbial changes have on ecosystem function, especially via effects on the cycling of essential elements, will be important for evaluating the potential of forests to act as a natural carbon sink in mitigating the effects of rising CO2."

Atmospheric CO2, the most abundant "greenhouse gas," has been increasing since the start of the industrial age, and is one of the main contributing factors associated with climate change. Since plants take in CO2 and convert it to biomass during photosynthesis, much research has focused on the potential of forests to sequester excess carbon and offset the rise in CO2.

Various studies have demonstrated increased plant growth under elevated CO2, but there is no consensus on many of the secondary effects associated with these plant responses. The goal of this study was to investigate the composition and role of microbial communities, which help to regulate the cycling of carbon and nitrogen in terrestrial ecosystems.

The study was conducted on soil samples collected at an experimental trembling aspen forest in Rhinelander, Wisconsin. That forest is outfitted with a series rings made of large pipes that can pump a controlled amount of carbon dioxide (or other gases) into the air to artificially mimic expected environmental changes in an otherwise open-air environment. This and other similar "free-air carbon dioxide enrichment" (FACE) facilities around the world were developed by the Department of Energy to help estimate how plants and ecosystems will respond to increasing CO2. Before FACE, much of what scientists knew about plant and ecosystem responses to rising CO2 came from studies conducted in enclosures, where the response of plants is modified by their growth conditions.

In this study, the scientists compared the microbial content of soil taken from three FACE rings receiving ambient levels of CO2 (about 383 parts per million, as of January 2007) with that from soil taken from three FACE rings that have been receiving elevated CO2 (560 parts per million) - a level expected to be ambient on Earth in the year 2100 if the current rate of CO2 increase remains constant at 1.9 parts per million per year.

The scientists first isolated the genetic material from each soil sample. They then used molecular genetics techniques to isolate regions of genetic material known to be highly species-specific, sequenced these regions, and compared them with genetic sequence libraries of known bacteria, eukaryotic microbes (those with nuclei, such as fungi and protozoa), and archaea, a group of microbes that are genetically distinct from bacteria and often dwell in extreme environments.

Main findings

There were no differences in total abundance of bacteria or eukaryotic microbes between ambient and high CO2 soil samples. But elevated CO2 samples showed significant changes in the composition of these communities, including: The increased plant growth associated with elevated CO2 environments has often been observed to be temporary because of the progressive depletion of the element nitrogen from the soil. Such a limitation has not yet been observed at the Rhinelander FACE site.

"Overall, the changes we observed support previously reported increases in biomass turnover rates and sustained availability and translocation of the essential nutrients required for increased plant growth under elevated CO2," van der Lelie said.
This study was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science and by the Laboratory Directed Research and Development program at Brookhaven Lab.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

DOE/Brookhaven National Laboratory

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.