Caltech scientists create titanium-based structural metallic-glass composites

December 19, 2008

PASADENA, Calif.--Scientists from the California Institute of Technology (Caltech) have created a range of structural metallic-glass composites, based in titanium, that are lighter and less expensive than any the group had previously created, while still maintaining their toughness and ductility--the ability to be deformed without breaking.

A paper describing these breakthrough metallic-glass alloys is now online in the Proceedings of the National Academy of Sciences (PNAS) Early Edition in advance of an upcoming print publication.

Earlier this year, the same Caltech group had published a paper in the journal Nature, describing new strategies for creating the liquid-metal composites. This research resulted in "alloys with unrivaled strength and toughness," notes Douglas Hofmann, visiting scientist and lead author on the PNAS paper that, along with the Nature paper, describes work he did while a graduate student at Caltech. "They are among the toughest engineering materials that currently exist."

Still, there were shortcomings to the alloys presented in Nature. Because they were created for use in the aerospace industry--among other structural applications--they needed to have very low densities. Ideally, the alloys would have had densities in or around those of crystalline titanium alloys, which fall between 4.5 and 5 grams per cubic centimeter (g/cc). The original alloys, made predominantly of zirconium, fell between 5.6 and 6.4 g/cc, putting them "in a no-man's-land of densities for aerospace structures," says Hofmann.

And so Hofmann and his colleagues--including William Johnson, Caltech's Ruben F. and Donna Mettler Professor of Engineering and Applied Science, and a pioneer in the creation of metallic glass--began tweaking the components in their composites, eventually coming up with a group of alloys with a high percentage of titanium, but which maintained the properties of the previously created zirconium alloys.

"Despite being based in titanium," Hofmann notes, "these alloys exhibit the same impressive properties as the zirconium alloys. They are still tough--in other words, they resist cracking--and they are still ductile. In fact, they are even more ductile than the alloys we'd created in the past."

This decrease in density also resulted in a reduction in cost, adds Hofmann, since zirconium is a more expensive metal than is titanium.
The work detailed in the paper, "Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility," was supported by the U.S. Office of Naval Research. Hofmann was supported by the U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship program.

The paper's coauthors included Johnson; Caltech graduate students Jin-Yoo Suh and Aaron Wiest; Mary-Laura Lind, a visitor in materials science; and Marios Demetriou, a senior research fellow in materials science.Visit the Caltech Media Relations website at

California Institute of Technology

Related Titanium Articles from Brightsurf:

From lab to industry? Ideally ordered porous titania films, made at scale
Researchers from Tokyo Metropolitan University have realized high-throughput production of thin, ordered through-hole membranes of titanium dioxide.

A 40-year-old catalyst unveils its secrets
Activity of the industrial catalyst TS-1 relies on titanium pairs / important discovery for catalyst development

Direct observation of a single electron's butterfly-shaped distribution in titanium oxide
A research team led by Nagoya University has observed the smeared-out spatial distribution of a single valence electron at the centre of a titanium oxide molecule, using synchrotron X-ray diffraction and a new Fourier synthesis method also developed by the team.

Titanium oxide-based hybrid materials promising for detoxifying dyes
Photoactive materials have become extremely popular in a large variety of applications in the fields of photocatalytic degradation of pollutants, water splitting, organic synthesis, photoreduction of carbon dioxide, and others.

Scientists have created new nanocomposite from gold and titanium oxide
ITMO University researchers together with their colleagues from France and the USA have demonstrated how a femtosecond laser can be used to tune the structure and nanocomposite properties for titanium dioxide films filled with gold nanoparticles.

Skoltech scientists developed a new cathode material for metal-ion batteries
Researchers from the Skoltech Center for Energy Science and Technology (CEST) created a new cathode material based on titanium fluoride phosphate, which enabled achieving superior energy performance and stable operation at high discharge currents.

First view of hydrogen at the metal-to-metal hydride interface
University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope.

The properties of thin titanium oxide films have been studied
Some titanium oxides are known for their unique properties, such as increased photocatalytic activity (i.e. they effectively use light to speed up chemical reactions).

Adding copper strengthens 3D-printed titanium
Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.

Fatigue-resistant, high-performance cooling materials enabled by 3D printing
High-performance solid-state elastocaloric cooling materials with exceptional fatigue resistance are made possible by 3D printing a nickel-titanium based alloy, researchers report.

Read More: Titanium News and Titanium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to