How mirror neurons allow us to learn and socialize by going through the motions in the head

December 19, 2008

The old adage that we can only learn how to do something by trying it ourselves may have to be revised in the light of recent discoveries in neuroscience. It turns out that humans, primates, some birds, and possibly other higher animals have mirror neurons that fire in the same pattern whether performing or just observing a task. These mirror neurons clearly play an important role in learning motor tasks involving hand eye coordination, and possibly also acquisition of language skills, as well as being required for social skills, but the exact processes involved are only just being discovered. In particular the relationship between mirror neural networks and social cognitive tasks has been unclear, and greater knowledge of it could shed light on problems such as autism that may arise when this process goes wrong.

This emerging field of mirror neurons in social cognition was discussed at a recent workshop organized by the European Science Foundation (ESF), which laid the ground for the first common research network dedicated to this fast emerging field, within the EU's 7th Research Framework Programme running until 2013.

The role of mirror neurons at all levels of social interaction is even greater than had been realized, according to convenor of the ESF conference Riccardo Viale, president of Rosselli Foundation in Turin, Italy and professor of Cognitive Science (University of Milan). "Most of the speakers highlighted how the mirror mechanism is crucial for both more basic forms of emotional recognition and also higher aspects of empathy," said Viale.

Just as the same mirror neurons fire when observing and doing certain tasks, so other mirror neurons may be triggered both when experiencing a particularly emotion and when observing someone else with that emotion. At the ESF conference it emerged that mirror neurons involved in emotion resided in both the insula and cingulate cortexes, two regions of the brain known to play roles in emotions and feelings. However until recently the mechanisms of interaction between these two had been largely unknown. "In the case of emotions, we can say that there is a good deal of overlap between areas from the insula and cingulate cortexes," said Viale. "These areas become active both when individuals feel an emotion (e.g. disgust) and also when they watch someone else feeling that emotion."

Mirror neurons were discovered in the 1980s by an Italian group led by Giacomo Rizzolatti, which placed electrodes in the inferior frontal cortex of macaque monkeys' brains to study neurons dedicated to control of hand movement. This led to the surprising observation that some of the neurons responded in the same way when monkeys saw a person pick up a piece of food as when they were doing it themselves. This introduced the principle of the mirror neuron as a neuron capable of being triggered by imitation, as a mechanism both for learning and empathising in social situations.

While mirror neutrons cannot be observed directly in humans because electrodes cannot be inserted into their brains, the action has been inferred by imaging of the whole brain using magnetic resonance imaging (MRI). This showed patterns of brain activity consistent with the firing of motor neurons.

More recently motor neurons have also been discovered in birds. "This suggests that such a sensory-motor mechanism is not confined to primates, but is shared by different phyla," said Viale. However the mechanism is not thought to be present in more primitive animals, including the lower cold blooded vertebrates, that is fish, reptiles and amphibians.
-end-
The ESF workshop took the field forward by highlighting growing agreement over the role of mirror neurons in social cognition. "The main outcome of the workshop was substantial convergence on some key points concerning the basic mechanisms of social cognition," said Viale. "In particular, most of the invited speakers agreed on the relevance of mirror-based action and emotion understanding in the phylogeny and ontogeny of mind-reading abilities." There was also agreement on the need to develop a multidisciplinary approach to the different levels of social cognition. The ESF workshop, Mirror Neurons and Social Cognition, was held in Turin, Italy, in September 2008.

European Science Foundation

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.