Research could improve laser-manufacturing technique

December 19, 2011

WEST LAFAYETTE, Ind. ╨ Engineers have discovered details about the behavior of ultrafast laser pulses that may lead to new applications in manufacturing, diagnostics and other research.

Ultrafast laser pulses are used to create features and surface textures in metals, ceramics and other materials for applications including the manufacture of solar cells and biosensors. The lasers pulse at durations of 100 femtoseconds, or quadrillionths of a second, and cause electrons to reach temperatures greater than 60,000 degrees Celsius during the pulse duration. The pulses create precise patterns in a process called "cold ablation," which turns material into a plasma of charged particles.

Images taken with a high-speed camera show tiny mushroom clouds eerily similar in appearance to those created in a nuclear explosion. The clouds expand outward at speeds of 100 to 1,000 times the speed of sound within less than one nanosecond. However, new findings reveal that an earlier cloud forms immediately before the mushroom cloud, and this early plasma interferes with the laser pulses, hindering performance, said Yung Shin, a professor of mechanical engineering and director of Purdue University's Center for Laser-Based Manufacturing. Finding a way to eliminate the interference caused by the early plasma could open up new applications in manufacturing, materials and chemical processing, machining and advanced sensors to monitor composition, and chemical and atomic reactions on an unprecedented scale, he said.

Researchers used experiments and simulations to study the phenomenon. Research papers about the work were published online Dec. 6 in Applied Physics Letters and in September in the journal Physics of Plasmas. The papers were written by doctoral student Wenqian Hu, Shin and mechanical engineering professor Galen King.

"We found the formation of early plasma has very significant bearing on the use of ultrashort pulse lasers because it partially blocks the laser beam," Shin said. "The early plasma changes the optical properties of air, but the mechanism is still largely unknown."

The researchers studied the early plasma by tracking the movement of millions of individual atoms in the plasma; observing how the laser beam travels in space and interacts with plasma; and using a "laser pump probe shadowgraph," a technique in which one laser ablates a material, producing the early plasma, and a second laser fired perpendicular to the first is used to study the cloud. A series of optical elements and mirrors is used in the shadowgraph technique.
-end-
The research has been funded by the National Science Foundation.

Related website:

Yung Shin:
https://engineering.purdue.edu/ME/People/ptProfile?id=12309

PHOTO CAPTION: Mechanical engineering doctoral student Wenqian Hu, who graduated this fall, works on a complex optical setup that is part of research at Purdue University to uncover details about the behavior of ultrafast laser pulses. The technology may have new applications in manufacturing, diagnostics and other research. (Purdue University photo/Mark Simons)

A publication-quality image is available at http://news.uns.purdue.edu/images/2011/shin-plasma.jpg

PHOTO CAPTION:


This series of high-speed images shows how plasma expands when material is exposed to ultrafast laser pulses. Purdue researchers have discovered details that could help to harness the technology for applications in manufacturing, diagnostics and research. (Yung Shin, Purdue University School of Mechanical Engineering) A publication-quality image is available at http://news.uns.purdue.edu/images/2011/shin-plasma2.jpg

Abstract on the research in this release can be found at: http://www.purdue.edu/newsroom/research/2011/111219ShinPlasma.html

Purdue University

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.