Better approach to treating deadly melanoma identified by scientists

December 19, 2012

Scientists at The University of Manchester have identified a protein that appears to hold the key to creating more effective drug treatments for melanoma, one of the deadliest cancers.

Researchers funded by Cancer Research UK have been looking at why new drugs called "MEK inhibitors", which are currently being tested in clinical trials, aren't as effective at killing cancer cells as they should be.

They discovered that MITF - a protein that helps cells to produce pigment but also helps melanoma cells to grow and survive - is able to provide cancer cells with a resistance to MEK inhibitors.

Dr Claudia Wellbrock and her team at the Wellcome Trust Centre for Cell-Matrix Research compared human melanoma cells that respond to the drug to cells that don't. They discovered that the cells that didn't respond to the drug contained higher levels of the protein SMURF2.

The researchers reduced the level of SMURF2 in the melanoma cancer cells and then treated the tumour with the MEK inhibitor. They found a 100 fold increase in the sensitivity of the cells to the drug. It appears that removing SMURF2 radically decreases the level of MITF in melanoma cells, making the MEK inhibitor a lot more powerful.

Using mice with tumours the team found that over a three week period there was a substantial decrease in tumour growth when the removal of SMURF2 was used in combination with MEK inhibitors.

Dr Wellbrock says: "Much of cancer research is now focussed on finding new drug combinations. It's recognised that cancers frequently find new ways to combat even the most novel and highly efficient drug treatments, so we are now focussing on targeting the mechanisms that allow the cancer cells to overcome the drug effects. We're very excited about the potential for this new approach that has proved to be so effective in our experiments."

One of the drawbacks of the MEK inhibitor drug is that it targets all cells. MEK (MAP/ERK kinase protein) is present in all cells but cancer cells have overactive MEK. This means the drug must be used in small doses and for a lengthy period to avoid harming healthy cells. By reducing SMURF2 to increase the drug's effectiveness smaller doses could be given over a shorter time period, reducing the level of toxicity in healthy cells.

Dr Wellbrock says: "If we can reduce the toxicity to all cells it will mean cancer treatments are less harmful to patients. It's vital that we improve the treatments for melanoma which is the fifth most common cancer in the UK. By the time many people are diagnosed with melanoma the cancer has already started to spread and advanced tumours can be highly resistant to conventional cancer treatments. The development of resistance to new drugs has also been a major drawback. If we can identify more potent and less toxic drug combinations to tackle melanoma then we could save thousands of lives."

This study was funded in part by Cancer Research UK and the results have been published in the Journal of the National Cancer Institute.

Talking about the research Dr Julie Sharp from the charity said: "Recently there have been some really exciting developments in treating melanoma - but new approaches that tackle the problem of resistance are still needed. This type of research will be a key focus of the planned new Manchester Cancer Research Centre which will bring together a wide range of research expertise to revolutionise cancer treatment."

The next step for Dr Wellbrock will be to find a drug that can reduce the activity of SMURF2 in cancer cells. The Manchester research team are now screening drug libraries for an existing drug that may already be approved for use for a different illness.

It's hoped that identifying a drug to use in combination with MEK inhibitors will provide a much more powerful and ultimately more successful approach to treating melanoma.
-end-


University of Manchester

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.