Brake on nerve cell activity after seizures discovered

December 19, 2012

SAN ANTONIO (Dec. 19, 2012) -- Given that epilepsy impacts more than 2 million Americans, there is a pressing need for new therapies to prevent this disabling neurological disorder. New findings from the neuroscience laboratory of Mark S. Shapiro, Ph.D., at The University of Texas Health Science Center at San Antonio, published Dec. 20 in the high-impact scientific journal, Neuron, may provide hope.

"A large fraction of epilepsy sufferers cannot take drugs for their disorder or the existing drugs do not manage it," said Dr. Shapiro, professor of physiology in the School of Medicine. "As a result, many opt for surgery to remove the hippocampus, a part of the brain where memories are stored but also where seizures are often localized. The heart-wrenching choice is between their memories and the epilepsy."

Genes go into action

A major finding of the study is that selected genes get switched on during and after a seizure, sending swarms of signals to reduce uncontrolled firing of nerve cells. A medication that amplifies this response after a person's initial seizure could thus prevent recurrent seizures and the onset of devastating epilepsy.

Uncontrolled electrical activity by specialized electricity-producing proteins in the brain called "ion channels" triggers epileptic seizures. One in 10 people have a lifetime risk of suffering a seizure, which can occur for a variety of reasons including traumatic brain injury, stroke or drug overdoses.

A powerful brake

Although not all seizures lead to epilepsy, some trigger changes in the brain that heighten the risk of the disorder. Dr. Shapiro's research sheds light on why most isolated seizures do not lead to full-blown epilepsy, whereas others do. An ion channel called the "M-channel" acts as a powerful "brake" on hyper-excitability in the brain. Another organizational protein, called AKAP79, acting much like an air-traffic controller, calls in more M channels as part of neuroprotective response machinery.

"In addition to epilepsy, the findings have implications for relief from chronic pains, cardiovascular disease and recovery from mood disorders," he added.

Pharmacological therapy to enhance M-channel gene expression or AKAP79 function "could jump-start this neuroprotective mechanism to prevent a seizure from turning into epilepsy," Dr. Shapiro said. "Administering it right after a traumatic brain injury could be very effective."

It was not known that electrical activity could regulate M-channel genes, Dr. Shapiro said. Nor was it known that the AKAP79 organizer protein, which coordinates many aspects of M-channel function, could turn on their genes in a person's DNA. By increasing M-channel expression in the brain, uncontrolled electrical firing of nerve cells in the brain is sharply controlled.

Mouse experiments

The Shapiro lab team records electrical currents and performs imaging in living nerve cells to measure M-channel activity. This study included inducing seizures in healthy mice. After a seizure, gene expression of M-channels in the hippocampus increased more than 10-fold within 24 hours, Dr. Shapiro said. This protective effect was completely absent in mice lacking the mouse version of the AKAP79 gene.

"Because excessive firing of nerve cells is also involved in chronic pains, such as migraines, mood disorders and hypertension, increasing M-channel signals to reduce nerve-cell firing could also likely be effective in treating those conditions," Dr. Shapiro said.

This is only the second research paper from The University of Texas Health Science Center at San Antonio to be published by Neuron since 1996.
-end-
This work was supported in part by grants from the National Institutes of Health, National Institute of Neurological Diseases and Stroke, NS065138 and NS043394, to Mark S. Shapiro, Ph.D., principal investigator.

On the Web and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website or follow us on Twitter @uthscsa.

About the UT Health Science Center San AntonioThe University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 4 percent of all institutions worldwide receiving federal funding. Research expenditures totaled $163.8 million in fiscal year 2012. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit www.uthscsa.edu.

University of Texas Health Science Center at San Antonio

Related Epilepsy Articles from Brightsurf:

Focal epilepsy often overlooked
Having subtler symptoms, a form of epilepsy that affects only one part of the brain often goes undiagnosed long enough to cause unexpected seizures that contribute to car crashes, a new study finds.

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?

Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.

How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.

Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.

Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.

Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.

Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.

Read More: Epilepsy News and Epilepsy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.