The first cancer operation room with a navigator is created

December 19, 2013

The system, presented at Gregorio Marañón Hospital, permits real-time interaction with the body of the patient (with its different tissues and cancer) as well as the radiotherapy applicator used to radiate the area affected by the tumor. This innovation will be used in the surgery of cancers treated with intraoperative radiotherapy in the hope of achieving greater precision in the radiation of potentially cancerous tissues after the removal of the tumor.

The installation of this new equipment has entailed a complete remodeling of the operating room. The new room, reinforced for this type of procedure, incorporates high-definition screens of high diagnostic quality to visualize the image of the patient in 3-D, three video monitoring cameras and a group of eight infrared cameras for real-time navigation placed in the area of the surgery that enables the surgeon to capture the movement of objects throughout the entire procedure. This technology shares the same principles of movement capture that are used in cinema and in video games to transfer the movement of actors to animated characters.

Medical personnel will have a 3-D representation of the patient and the applicator that conducts the radiation so that it can be guided into the patient via the high-definition screens of the operating room. On this representation, reconstructed from a previous scan, the placement of the applicator over the tumor bed is observed so that only tissues with cancerous residue or risk predetermined in each patient are radiated. Moreover, the area, the depth and the dose that any tissue (like skin, bone, muscle, intestines or bladder) will receive can be predetermined and adjusted on-site and healthy tissues can be checked for any additional risk.

This device, developed by scientists within the framework of research projects financed by the Autonomous Region of Madrid, the Ministry of Economy and Competitiveness and FEDER funds, makes the Madrid hospital an international point of reference in technological innovation and the application of research results to daily clinical practice. Dr. Javier Pascau, professor in the Bioengineering and Aerospace Engineering Department at the UC3M and part of the BIIG research group led by Dr. Manuel Desco, is the head researcher of several research projects that include this development. As he explains, the system employs multiple cameras to locate objects in three-dimensional scenarios like the intraoperative radiotherapy applicator. This information is sent to the planning system, which updates the real position of the applicator over the CAT (Computed Axial Tomography) of the patient and shows it on the screen. Thanks to this navigation system, the oncologist will be able to compare the current position and orientation of the applicator to the one previously planned and, if necessary, repeat the estimation of the distribution of the dose to adjust the treatment to the actual surgical scenario. The precision of the system, the first stereotactic navigator available in the field of intraoperative radiotherapy, has been evaluated by university researchers and was recently published in Physics in Medicine and Biology.

Intraoperative radiotherapy is an anti-tumor treatment which, after the removal of the cancer, allows doctors to radiate the areas affected by the tumor or parts that could not be eliminated with a high degree of precision. Through this procedure, it is hoped that the cancer then does not reproduce. In addition, "another advantage of this procedure is that all tumors can receive this treatment, although most of the ones that have been treated--and with very convincing results--were cancers of the digestive system and sarcomas," asserts Felipe Calvo, head of the Oncology Department at Gregorio Marañón Hospital.

Furthermore, Dr. Calvo adds that intelligent systems, like the intraoperative radiotherapy radiance simulator (developed and patented by Marañón Hospital researchers and practitioners and the company GMV) and this new navigator "will make it possible to cut treatment time thanks to the use of large single doses on a very well-defined tumor, protecting healthy tissue at the same time. Intraoperative radiotherapy does not compete with but instead complements chemotherapy and the administration of biological medicines."

Intraoperative radiotherapy has been incorporated into advances in laparoscopic oncological surgery with obvious benefits for the patient, like the reduction of the biological impact of the postoperative period from between 4 and 7 days to 48 hours, and a procedure which requires less invasive surgery. In premature breast cancer, instead of lasting six to eight weeks in the case of conventional treatment, radiation therapy treatment and surgery can be done in only 24 hours.
-end-
More information:

Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios

Authors: V García-Vázquez. E Marinetto. J A Santos-Miranda. F A Calvo. M Desco. J Pascau.

Physics in Medicine and Biology. Volume: 58. Number: 24. Published 4 December 2013 doi:10.1088/0031-9155/58/24/8769 http://iopscience.iop.org/0031-9155/58/24/8769

Carlos III University of Madrid

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.