Controlling parasitic worms with genetic selection

December 19, 2013

Helminths are gastrointestinal parasitic worms that have become a major concern and source of economic loss for sheep producers around the world. A new article published today in the Canadian Journal of Animal Science reviews current research into a promising alternative to control the disease.

According to the paper, the sheep industry has become dependent on drugs to control these parasites. Over time these drugs are less effective as helminths become resistant to the drugs. Therefore, there is pressure on the industry to find alternate strategies. One such strategy is genetic selection. Certain breeds of sheep are more immune to helminths than the conventional breeds used in Canada, and a breeding program that aims to pass on this resistance trait could help to control the disease and ultimately limit production losses attributed to helminth infection.

A key advantage to applying genetic selection rather than chemicals to get rid of the worms is that it is permanent and it could help reduce the potential risk of chemical residues in products made for human consumption. This is key for the public as well as the sheep industry.

"With today's developments in genomic selection, breeding sheep for helminth resistance can be achieved efficiently, without adversely affecting other economically important traits," explained Niel Karrow, lead author of the paper, a researcher at the Centre for Genetic Improvement of Livestock at the University of Guelph.

"We believe that breeding for helminth resistance, when combined with good biosecurity and pasture management practises, will greatly help to control against production losses due to gastrointestinal parasites."
-end-
The article "Genetics of helminth resistance in sheep" was published e-first today in the Canadian Journal of Animal Science.

DOI: 10.4141/CJAS2013-036

Canadian Science Publishing (NRC Research Press)

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.