Brain connections may explain why girls mature faster

December 19, 2013

As we grow older, our brains undergo a major reorganisation reducing the connections in the brain. Studying people up to the age of 40, scientists led by Dr Marcus Kaiser and Ms Sol Lim at Newcastle University found that while overall connections in the brain get streamlined, long-distance connections that are crucial for integrating information are preserved.

The researchers suspect this newly-discovered selective process might explain why brain function does not deteriorate - and indeed improves -during this pruning of the network. Interestingly, they also found that these changes occurred earlier in females than in males.

Explaining the work which is being published in Cerebral Cortex, Dr Kaiser, Reader in Neuroinformatics at Newcastle University, says: "Long-distance connections are difficult to establish and maintain but are crucial for fast and efficient processing. If you think about a social network, nearby friends might give you very similar information - you might hear the same news from different people. People from different cities or countries are more likely to give you novel information. In the same way, some information flow within a brain module might be redundant whereas information from other modules, say integrating the optical information about a face with the acoustic information of a voice is vital in making sense of the outside world."

The researchers at Newcastle, Glasgow and Seoul Universities evaluated the scans of 121 healthy participants between the ages of 4 and 40 years as this is where the major connectivity changes can be seen during this period of maturation and improvement in the brain. The work is part of the EPSRC-funded Human Green Brain project which examines human brain development and is being published in Cerebral Cortex.

Using a non-invasive technique called diffusion tensor imaging - a special measurement protocol for Magnetic Resonance Imaging (MRI) scanners - they demonstrated that fibres are overall getting pruned that period.

However, they found that not all projections (long-range connections) between brain regions are affected to the same extent; changes were influenced differently depending on the types of connections.

Projections that are preserved were short-cuts that quickly link different processing modules, e.g. for vision and sound, and allow fast information transfer and synchronous processing. Changes in these connections have been found in many developmental brain disorders including autism, epilepsy and schizophrenia.

The researchers have demonstrated for the first time that the loss of white matter fibres between brain regions is a highly selective process - a phenomenon they call preferential detachment. They show that connections between distant brain regions, between brain hemispheres, and between processing modules lose fewer nerve fibres during brain maturation than expected. The researchers say this may explain how we retain a stable brain network during brain maturation.

Commenting on the fact that these changes occurred earlier in females than males, Ms Sol Lim explains: "The loss of connectivity during brain development can actually help to improve brain function by reorganizing the network more efficiently. Say instead of talking to many people at random, asking a couple of people who have lived in the area for a long time is the most efficient way to know your way. In a similar way, reducing some projections in the brain helps to focus on essential information."
-end-
Academic paper: Preferential Detachment During Human Brain Development: Age- and Sex-Specific Structural Connectivity in Diffusion Tensor Imaging (DTI) Data. Sol Lim; Cheol E. Han; Peter J. Uhlhaas; Marcus Kaiser.CerebralCortex 2013; doi: 10.1093/cercor/bht333

Newcastle University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.