Essential factor for Lyme disease transmission identified

December 19, 2013

Borrelia burgdorferi, the bacterium that causes Lyme disease, hitchhikes in ticks for dissemination to mammalian hosts--including humans. An article in the 19 December issue of PLOS Pathogens identifies HrpA, an RNA helicase, as a crucial player in the transmission from ticks to mammals.

George Chaconas, from the University of Calgary, Canada, and a member of the university's Snyder Institute for Chronic Diseases, and colleagues had previously identified HrpA as a modulator of B. burgdorferi protein expression. For this study, Chaconas' group joined forces with Justin Radolf and Melissa Caimano from the University of Connecticut Health Center, USA, to analyze the molecular function of the HrpA protein and further explore its role in the bacterium's complicated life cycle, in particular for transmission of the pathogen.

Its DNA sequence suggests that HrpA is an RNA helicase, a protein that can harvest energy from the cell's stores, use it to unwind RNA, and so regulate translation of RNA into protein. Most bacteria have several putative helicases, including one from the HrpA family, but nothing was known about the actual HrpA function from other species. HrpA is the only putative RNA helicase in B. burgdorferi, and the scientists found that it indeed possesses the multiple activities characteristic of a helicase: it can bind to RNA and use its ATPase activity to harvest energy, which in turn is used to unwind the RNA strand. They also showed that these activities are involved in the regulation of target RNAs.

When the scientists tested whether mutant B. burgdorferi that lacked the hrpA gene could infect mice, they found that the mutant bacteria could not. For this experiment, the scientists injected normal or mutant bacteria directly into mice, and subsequently tested mouse blood, skin, bladder, or joint tissue for the presence of bacteria. Normal bacteria could be recovered from all tissues after a week and up to 4 weeks post injection, but mutant bacteria were undetectable even after one week, suggesting that they were unable to survive or multiply in the mammalian host.

HrpA-deficient bacteria were also unable to infect mice using the natural route, i.e. via a bite from an infected tick. This was not because the mutant bacteria were unable to grow or survive in the ticks. Rather the mutants could not exit the tick midgut or enter the salivary glands, where Borrelia needs to be for successful transmission during feeding; even right after the engorged ticks fell off, mutant bacteria were not detectable in the mouse skin around the attachment site.

The authors say, "We now know that HrpA is involved in both parts of the B. burgdorferi lifecycle: animal infection and tick transmission, making it a very important protein in B. burgdorferi gene regulation and establishing gene regulation through an RNA helicase as an important regulatory pathway in the Lyme spirochete."
-end-
Funding:

This work was supported by NIH/NIAID grants AI29735 (MJC and JR) and AI85248 (MJC), and grant MOP 53086 (GC) from the Canadian Institutes of Health Research. GC also holds a Canada Research Chair in the Molecular Biology of Lyme Borreliosis and a Scientist Award from Alberta Innovates - Health Soultions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests:

The authors have declared that no competing interests exist.

Citation:

Salman-Dilgimen A, Hardy P-O, Radolf JD, Caimano MJ, Chaconas G (2013) HrpA, an RNA Helicase Involved in RNA Processing, Is Required for Mouse Infectivity and Tick Transmission of the Lyme Disease Spirochete. PLoS Pathog 9(12): e1003841. doi:10.1371/journal.ppat.1003841

PLOS

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.