Classic signaling pathway holds the key to prostate cancer progression

December 19, 2013

Approximately 1 out of every 6 American men will be diagnosed with prostate cancer, and this year alone there are expected to be nearly a quarter of a million new cases diagnosed, making prostate cancer the most common malignancy among men in the United States. Center for Nuclear Receptors & Cell Signaling (CNRCS) Assistant Professor Daniel Frigo and his research team recently published a study investigating the processes through which androgen receptors affect prostate cancer progression. The publication, "Androgens Regulate Prostate Cancer Cell Growth via an AMPK-PGC-1α-Mediated Metabolic Switch," featured online in Oncogene, illuminates a known metabolic pathway as a potential novel therapeutic target.

Although it is well established that the androgen receptor is important for prostate cancer progression, it is unclear what drives this process. Frigo and his team demonstrated in this study that androgens take control of the AMPK signaling cascade, a master regulator of metabolism, to increase prostate cancer cell growth.

"The androgen signaling cascade is important for understanding early and late-stage prostate cancer progression. We found that when androgens activated this signaling pathway, it hijacked normal conditions, allowing the tumor to use diverse nutrients to the detriment of the patient," says Frigo. "These results emphasize the potential utility of developing metabolic-targeted therapies directed toward this signaling cascade for the treatment of prostate cancer. We look forward to exploring this and other metabolic pathways further in order to develop the next generation of cancer therapies."
-end-
CNRCS graduate students directly contributed to this study, working alongside postdoctoral fellows and collaborators outside the Center. This research was supported by the National Institutes of Health, Department of Defense, Texas Emerging Technology Fund, and Golfers Against Cancer.

Established in 2009, UH's Center for Nuclear Receptors and Cell Signaling (CNRCS) is a leading component of the UH Health initiative. Led by Jan-Åke Gustafsson, a National Academy of Sciences member and world-renowned expert in the field of nuclear receptors, CNRCS researchers are involved in many aspects of nuclear receptor research, all focused on understanding the roles of these receptors in health and disease. CNRCS researchers are working toward the goal of finding new treatments for an array of significant diseases including cancer, diabetes, metabolic syndrome and neurological disorders. Working from the center's world-class labs, the researchers combine interdisciplinary research and dynamic collaboration with the Texas Medical Center and industry partners.

University of Houston

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.