Making a good thing better

December 19, 2014

The lithium-ion batteries that mobilize our electronic devices need to be improved if they are to power electric vehicles or store electrical energy for the grid. Berkeley Lab researchers looking for a better understanding of liquid electrolyte may have found a pathway forward. A team led by Richard Saykally, a chemist with Berkeley Lab's Chemical Sciences Division, David Prendergast, a theorist with Berkeley Lab's Molecular Foundry, and Steven Harris, a chemist with the Lab's Materials Sciences Division, found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrolyte.

"A crucial process in lithium ion batteries is the transport of lithium ions between the electrodes," explains Saykally. "Commercial lithium-ion batteries contain a liquid electrolyte comprising a lithium salt dissolved in an alkyl carbonate solvent system. There's disagreement in the battery industry on the nature of the local solvation environment of lithium ions in these solutions, a critical issue because the desolvation of the ions as they move through the negative electrode is believed to limit the electrical power that can be made available."

Most previous computational simulations have predicted a tetrahedral solvation structure for the lithium ion in the electrolyte, but the new study by Saykally, Prendergast, Harris and their collaborators show this to not be the case.

"Our results indicate a solvation number of 4.5, which points to a non-tetrahedral solvation structure for the lithium ions," says lithium-battery expert Harris. "This contradicts numerous theoretical studies which indicated a primarily tetrahedral coordination structure with a solvation number near 2 or 3, depending on the prevalence of ion pairing. Based on our results, to design better performing electrolytes, future computational models will need to move beyond tetrahedral coordination structures."

Lithium-ion batteries (LIBs) make any short list of great inventions of the 20th century. Today LIBs represent a multibillion dollar industry as the power supply of cellular phones, tablets, laptops and other handheld electronic devices. However, serious shortcomings - high costs, inadequate energy densities, long recharge times and short cycle-life times - have hampered the use of LIBS for electric vehicles and for efficient electrical energy storage systems that can be used in conjunction with wind and solar energy sources.

Although it has become increasingly clear to the battery industry that improvements in the liquid electrolyte are essential if LIBs are to be effective for electric vehicles and large-scale energy storage, most LIB research has focused on the electrodes and solid electrolyte interphase. The problem has been a lack of capabilities for the requisite experiments, particularly X-ray spectroscopy.

This deficiency was addressed by Saykally and his group with their development of a unique liquid microjet technology in which two aqueous samples rapidly mix and flow through a finely tipped silica nozzle only a few micrometers in diameter. The resulting liquid beam travels a few centimeters in a vacuum chamber before it is intersected by an X-ray beam then collected and condensed out. This liquid microjet system has been set up at Beamline 8.0.1 of Berkeley Lab's Advanced Light Source (ALS). Beamline 8.0.1 is a high flux undulator beamline that produces X-ray beams optimized for X-ray spectroscopy.

"Working at the ALS with our liquid microjet system, we used X-ray absorption spectroscopy to study lithium tetrafluoroborate in propylene carbonate," Saykally says. "X-ray absorption spectroscopy is an atom-specific core-level spectroscopic probe of unoccupied electronic states. It is highly sensitive to both the intra- and intermolecular environment of the target atom."
-end-
The XAS experimental spectra were interpreted through molecular dynamics and density functional theory spectral simulations carried out on the supercomputers at the National Energy Research Scientific Computing Center (NERSC) by Prendergast and Jacob Smith, a graduate student in Saykally's research group. The ALS, the Molecular Foundry and NERSC are all DOE Office of Science national user facilities hosted at Berkeley Lab.

A paper describing this research has been published in the journal Physical Chemistry Chemical Physics. The paper is titled, "X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte." Saykally is the corresponding author, Smith the lead author. Other co-authors in addition to Harris and Prendergast were Royce Lam, Alex Sheardy, Orion Shih, Anthony Rizzuto and Oleg Borodin.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

DOE/Lawrence Berkeley National Laboratory

Related Lithium Articles from Brightsurf:

Preventing lithium loss for high-capacity lithium-ion batteries
A team of Korean researchers has developed a processing technology for maximizing energy densities of high-capacity batteries.

Using Jenga to explain lithium-ion batteries
Tower block games such as Jenga can be used to explain to schoolchildren how lithium-ion batteries work, meeting an educational need to better understand a power source that has become vital to everyday life.

Powering the future with revolutionary lithium extraction technique
An international research team, led by Australia's Monash University, has pioneered and patented a new filtration technique that could one day slash lithium extraction times and change the way the future is powered.

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Using neutrons and X-rays to analyze the aging of lithium batteries
An international team has used neutron and X-ray tomography to investigate the dynamic processes that lead to capacity degradation at the electrodes in lithium batteries.

Can lithium halt progression of Alzheimer's disease?
In a new study, a team of researchers at McGill University has shown that, when given in a formulation that facilitates passage to the brain, lithium in doses up to 400 times lower than what is currently being prescribed for mood disorders is capable of both halting signs of advanced Alzheimer's pathology and of recovering lost cognitive abilities.

MTU engineers examine lithium battery defects
Lithium dendrites cause poor performance and even explosions in batteries with flammable liquid electrolytes.

New technology for pre-replenishing lithium for lithium ion supercapacitors
Li3N containing electrode is prepared by a commercially adoptable route, using DMF to homogenate the electrode slurry.

Towards new lithium-ion batteries that are safer and more efficient
Researchers have studied 2 types of cathodes that are very similar in their composition, but which show completely different behavior: one of them suffers from the known loss of energy density in the first charge cycle, while the other does not.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Read More: Lithium News and Lithium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.