Nav: Home

White matter structure in the brain predicts cognitive function at ages 1 and 2

December 19, 2016

CHAPEL HILL, NC - A new study led by UNC School of Medicine researchers concluded that patterns of white matter microstructure present at birth and that develop after birth predict the cognitive function of children at ages 1 and 2.

"To our knowledge, this study is the first to measure and describe the development of white matter microstructure in children and its relationship to cognitive development from the time they are born until the age of 2 years," said John H. Gilmore, MD, senior author of the study and director of the Early Brain Development Program in the UNC Department of Psychiatry.

The study was published online on December 19, 2016 in the Proceedings of the National Academy of Sciences.

White matter is the tissue in the brain that contains axon fibers, which connect neurons in one brain region to neurons in another region. White matter is critical for normal brain function, and little is known about how white matter develops in humans or how it is related to growth of cognitive skills in early childhood, including language development. In the study, a total of 685 children received diffusion tensor imaging (DTI) scans of their brains. DTI is a magnetic resonance imaging (MRI) technique that provides a description of the diffusion of water through tissue, and can be used to identify white matter tracts in the brain and describe the organization and maturation of the tracts.

The study authors used these brain scans to investigate the microstructure of 12 white matter fiber tracts important for cognitive function, their relationship to developing cognitive function and their heritability. They found all 12 of the fiber tracts in the newborns were highly related to each other. By age 1, these fiber tracts had begun to differentiate themselves from each other, and by age 2 this differentiation was further advanced. The most interesting finding from the study was that the common relationship between white matter tracts at birth predicted overall cognitive development at age 1 and language development at age 2, indicating that it may be possible to use brain imaging at birth to better understand how a child's cognitive development will proceed in the first years after birth.

Because the sample included 429 twins, the study authors were also able to calculate that this predictive trait was moderately heritable, suggesting that genetics may be a factor in its development.

"There is rapid growth of brain structure, cognition and behavior in early childhood, and we are just starting to understand how they are related," Gilmore said "With a better understanding of these relationships, we ultimately hope to be able to identify children at risk for cognitive problems or psychiatric disorders very early and come up with interventions that can help the brain develop in a way to improve function and reduce risk."

In addition to Gilmore, authors of the study are Seung Jae Lee, Rachel J. Steiner, Yang Yu, Sarah J. Short, Michael C. Neale, Martin Styner, and Hongtu Zhu. All are at UNC except for Neale, who is in the Virginia Institute of Psychiatric and Behavioral Genetics at Virginia Commonwealth University.
-end-
This study was supported by grants from the National Institute of Mental Health (MH064065, MH 070890, RR025747 and MH086633), National Institute of Child Health and Human Development (HD053000) and the National Science Foundation (SES-1357666).

University of North Carolina Health Care

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab