Quantum trick blocks background 'chatter' in sensing devices

December 19, 2017

A University of Sydney team has solved a common problem in quantum sensing devices, which are used in biomedical imaging and have defence applications.

Industrial sensors are everywhere in our technology and in order to function successfully they must be able to identify tiny signals from a cluttered background.

For most humans this is simple. Walk into a crowded room and you can pick out a single voice while ignoring everyone else. That trick isn't so easy for industrial sensors - and the challenge gets even harder for super-sensitive quantum devices.

Now, a team led by Professor Michael J. Biercuk from the University of Sydney, in collaboration with Dartmouth College and Johns Hopkins Applied Physics Laboratory in the US, has developed quantum control techniques enabling a new generation of ultra-sensitive sensors that can identify tiny signals while rejecting background noise down to theoretical limits.

"By applying the right quantum controls to a qubit-based sensor, we can adjust its response in a way that guarantees the best possible exclusion of the background clutter - that is, the other voices in the room," said Professor Biercuk, a chief investigator at the ARC Centre of Excellence for Engineered Quantum Systems.

While devices themselves have improved, the measurement protocols used to capture and interpret the signals have lagged behind. Quantum sensors therefore often return fuzzy results, which complicates interpretation of the data through a phenomenon known as "spectral leakage" - a bit like being distracted by the wrong voices in the room.

The University of Sydney research, published on Tuesday in Nature Communications, demonstrates control protocols that will help take advantage of improved sensor hardware.

The experiments, using trapped atomic ions, have reduced spectral leakage by many orders of magnitude over conventional methods. Professor Biercuk said in certain circumstances, the methods they have developed are up to 100 million times better at excluding this background.

Quantum sensors take advantage of the very thing that makes building quantum computers so difficult. Quantum bits, or qubits, are the building blocks of quantum computers but they are highly prone to losing their quantum properties due to interference from the environment. This challenge can be turned on its head and used to build sensors that are much more responsive to the environment than classical technologies.

Professor Biercuk said the new protocols could have applications in medicine, such as imaging inside living cells using nanodiamonds. They could also be used in defence and security systems that use quantum-enhanced magnetometers, devices that measure changes in magnetic fields for target identification and tracking.

He said: "Our approach is relevant to nearly any quantum sensing application and can also be applied to quantum computing as it provides a way help identify sources of hardware error. This is a major advance in how we operate quantum sensors."

Professor Biercuk has recently launched a venture-capital-backed spin-off from the work being done at the University of Sydney. Q-Ctrl aims to be the trusted provider of quantum control solutions for all new quantum technologies.
-end-
Notes for editors:

Professor Michael J. Biercuk is Director of the Quantum Control Laboratory in the Sydney Nanoscience Hub at the University of Sydney.

The Sydney Nanoscience Hub is the flagship building of the University of Sydney Nano Institute.

University of Sydney

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.