Nav: Home

New measurements to guide radiation therapy

December 19, 2017

WASHINGTON, D.C., December 19, 2017 -- When ionizing radiation passes through living tissue, it interacts with molecules present in the cells, stripping away electrons and producing charged species known as ions. Ionizing radiation used for cancer treatment includes gamma rays, X-rays and energetic particles such as alpha and beta rays.

The electrons produced by this process, known as secondary electrons, can themselves go on to wreak further havoc, causing even more dramatic changes. This week in the Journal of Chemical Physics, from AIP Publishing, a group of investigators reports studies of the impact of secondary electrons on a model of DNA.

The measurements were made in a condensed-phase environment. Compared to isolated electron-molecule experiments, the condensed-phase measurements are made under conditions closer to those found in living tissue. The results will be used to accurately calculate the damage and radiation dose delivered to patients in radiotherapy, when cancer cells are bombarded with ionizing radiation.

Secondary electrons are the most important species created by ionizing radiation in living tissue. These "low energy electrons," or LEEs, interact with biological molecules, sometimes breaking them into fragments. One of the affected molecules is deoxyribonucleic acid, or DNA, the molecule that carries genetic code. The long, chainlike DNA molecule consists of a ladder of base pairs connected to each other through a deoxyribose phosphate group.

The precise way LEEs interact with portions of the DNA molecule, the bases themselves or the phosphate backbone, is still not precisely understood, although LEEs do have enough energy to initiate DNA strand breaks. This can affect cell function, leading to mutations and even cell death. In this week's report, the investigators employed a model molecule known as dimethyl phosphate, or DMP, to study the interaction of LEEs with the phosphate backbone of DNA.

New radiation treatment methods, currently under development, can precisely target the radiation to specific cancer cells or even specific locations within those cells. This method, known as targeted radionuclide therapy, or TRT, involves the use of molecules labeled with radioactive atoms that are injected into patients and localized in cancer cells. Once in place, the radioactive molecules produce ionizing radiation inside or close to cancer cells. This radiation then goes on to generate localized LEEs.

An important part of the TRT method involves computer simulations used to predict the interactions of LEEs with biological matter and the amount of radiation absorbed by the targeted biomolecules or cells. One of the key parameters in these simulation models are absolute cross sections, which give the probability of interaction between a single LEE and a target molecule. The work reported here represents the first direct measurement of absolute cross sections for the phosphate unit in DNA, values required to calculate strand breaks induced by LEEs.

The DNA present in a living system is surrounded by water and other types of molecules, so studying these processes in a more realistic environment is particularly desirable. In future work, the DNA will be embedded in water and molecular oxygen, known to sensitize cells to radiotherapy.
-end-
The article, "Absolute vibrational excitation cross sections for 1-18 eV electron scattering from condensed dimenthyl phosphate (DMP)," is authored by Vincent Lemelin, Andrew Bass, Richard Wagner and Leon Sanche. The article will appear in the Journal of Chemical Physics Dec. 19, 2017 (DOI: 10.1063/1.5008486). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5008486.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Cancer Cells Articles:

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.