Halogens can increase solar cell performance by 25 per cent

December 19, 2017

New research from the University of British Columbia and the University of North Carolina at Chapel Hill shows that using halogens--a class of elements that include fluoride, bromine, chlorine and iodine--in a dye-sensitized solar cell can increase conversion efficiency by 25 per cent. The discovery could set the stage for improved solar cell designs.

"Dye-sensitized solar cells are a promising, advanced type of solar cell for urban applications, but there is much room for improvement given that the conversion rates range from seven to 14 per cent," said lead author Fraser Parlane, a graduate student in chemistry at UBC. "This is the first direct proof that halogens and the bonds they form with other molecules can be the crucial factor in increasing the performance of a dye-sensitized solar cell."

A dye-sensitized solar cell consists of an electrolyte, two electrodes, and a thin semiconductor film coated with a light-absorbing dye. When light strikes the dye, it releases electrons into the semiconductor and from there to the electrodes, producing an electrical current.

For the cell to function well, the electrolyte must constantly and rapidly resupply the dye with electrons. The researchers found that the presence of the halogens accelerated this electron transfer. They experimented with four different dyes containing fluoride, bromine, chlorine or iodine and used X-ray absorption spectroscopic technique at a synchrotron to observe the process.

"Halogens haven't been the focus of much solar cell research. They form very weak, transient bonds that exist for less than 10 microseconds, and they typically make up just a tiny portion of all the atoms in a solar cell. We're thrilled to prove that these bonds can make such a significant difference in solar energy conversion," said Curtis Berlinguette, a professor of chemistry and chemical and biological engineering at UBC who supervised the work.

The researchers also found that the larger the halogen, the better the dye is at being resupplied with electrons. Dyes containing iodine, which is more than twice the radius of fluorine, are regenerated almost three times faster by the electrolyte.

"Altogether, these discoveries can help us fine-tune the interactions in dye-sensitized solar cells to optimize their performance. And that could open new avenues of exploration in the search for cheap and efficient energy conversion technologies," added Berlinguette.
The study was published last month in Nature Communications. (URL: https://www.nature.com/articles/s41467-017-01726-7)

University of British Columbia

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.