Nav: Home

Disordered crystals are promising for future battery technology

December 19, 2018

Tiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology, which could possess increased capacity compared to conventional lithium-ion batteries, find UCL and University of Illinois at Chicago researchers.

The study, published today in Nanoscale, reports a new, scalable method for making a material that can reversibly store magnesium ions at high-voltage, the defining feature of a cathode.

While it is at an early stage, the researchers say it is a significant development in moving towards magnesium-based batteries. To date, very few inorganic materials have shown reversible magnesium removal and insertion, which is key for the magnesium battery to function.

"Lithium-ion technology is reaching the boundary of its capability, so it's important to look for other chemistries that will allow us to build batteries with a bigger storage capacity and a slimmer design," said co-lead author, Dr Ian Johnson (UCL Chemistry).

"Magnesium battery technology has been championed as a possible solution to provide longer-lasting phone and electric car batteries, but getting a practical material to use as a cathode has been a challenge."

One factor limiting lithium-ion batteries is the anode. Low-capacity carbon anodes have to be used in lithium-ion batteries for safety reasons, as the use of pure lithium metal anodes can cause dangerous short circuits and fires.

In contrast, magnesium metal anodes are much safer, so partnering magnesium metal with a functioning cathode material would make a battery smaller and store more energy.

Previous research using computational models predicted that magnesium chromium oxide (MgCr2O4) could be a promising candidate for Mg battery cathodes.

Inspired by this work, UCL researchers produced a ~5 nm, disordered magnesium chromium oxide material in a very rapid and relatively low temperature reaction.

Collaborators at the University of Illinois at Chicago then compared its magnesium activity with a conventional, ordered magnesium chromium oxide material ~7 nm wide.

They used a range of different techniques including X-ray diffraction, X-ray absorption spectroscopy and cutting-edge electrochemical methods to see the structural and chemical changes when the two materials were tested for magnesium activity in a cell.

The two types of crystals behaved very differently, with the disordered particles displaying reversible magnesium extraction and insertion, compared to the absence of such activity in larger, ordered crystals.

"This suggests the future of batteries might lie in disordered and unconventional structures, which is an exciting prospect and one we've not explored before as usually disorder gives rise to issues in battery materials. It highlights the importance of seeing if other structurally defective materials might give further opportunities for reversible battery chemistry" explained Professor Jawwad Darr (UCL Chemistry).

"We see increasing the surface area and including disorder in the crystal structure offers novel avenues for important chemistry to take place compared to ordered crystals.

Conventionally, order is desired to provide clear diffusion pathways, allowing cells to be charged and discharged easily - but what we've seen suggests that a disordered structure introduces new, accessible diffusion pathways that need to be further investigated," said Professor Jordi Cabana (University of Illinois at Chicago).

These results are the product of an exciting new collaboration between UK and US researchers. UCL and the University of Illinois at Chicago intend to expand their studies to other disordered, high surface area materials, to enable further gains in magnesium storage capability and develop a practical magnesium battery.
-end-
Funding for the project was provided by the Joint Center for Energy Storage Research, a US Department of Energy Innovation Hub, and the JUICED Energy Hub by the Engineering and Physical Sciences Research Council.

University College London

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
More Batteries News and Batteries Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...