Nav: Home

Research sheds new light on what drove last, long-term global climate shift

December 19, 2018

The quest to discover what drove the last, long-term global climate shift on Earth, which took place around a million years ago, has taken a new, revealing twist.

A team of researchers led by Dr Sev Kender from the University of Exeter, have found a fascinating new insight into the causes of the Mid-Pleistocene Transition (MPT) - the phenomenon whereby the planet experienced longer, intensified cycles of extreme cold conditions.

While the causes of the MPT are not fully known, one of the most prominent theories suggests it may have been driven by reductions in glacial CO2 emissions.

Now, Dr Kender and his team have discovered that the closure of the Bering Strait during this period due to glaciation could have led the North Pacific to become stratified - or divided into distinct layers - causing CO2 to be removed from the atmosphere. This would, they suggest, have caused global cooling.

The team believe the latest discovery could provide a pivotal new understanding of how the MPT occurred, but also give a fresh insight into the driving factors behind global climate changes.

The research is published in Nature Communications on December 19th 2018.

Dr Kender, a co-author on the study from the Camborne School of Mines, based at the University of Exeter's Penryn Campus in Cornwall said: "The subarctic North Pacific is composed of some of the oldest water on Earth, which has been separated from the atmosphere for such a long time that a high concentration of dissolved CO2 has built up at depth. When this water upwells to the surface, some of the CO2 is released. This is thought to be an important process in geological time, causing some of the global warming that followed past glaciations.

"We took deep sediment cores from the bottom of the Bering Sea that gave us an archive of the history of the region. By studying the chemistry of sediment and fossil shells from marine protists called foraminifera, we reconstructed plankton productivity, and surface and bottom water masses. We were also able to better date the sediments so that we could compare changes in the Bering Sea to other global changes at that time.

"We discovered that the Bering Sea region became more stratified during the MPT with an expanded intermediate-depth watermass, such that one of the important contributors to global warming - the upwelling of the subarctic North Pacific - was effectively curtailed."

The Earth's climate has always been subjected to significant changes, and over the past 600,000 years and more it has commonly oscillated between warm periods, similar today, and colder, 'glacial' periods when large swathes of continents are blanketed under several kilometres of ice.

These regular, natural changes in the Earth's climate are governed by changes in how the Earth orbits around the sun, and variations in the tilt of its axis caused by gravitational interactions with other planets.

These changes, known as orbital cycles, can affect how solar energy is dispersed across the planet. Some orbital cycles can, therefore, lead to colder summers in the Northern Hemisphere which can trigger the start of glaciations, while later cycles can bring warmer summers, causing the ice to melt.,

These cycles can be influenced by a host of factors that can amplify their effect. One of which is CO2 levels in the atmosphere.

As the MPT occurred during a period when there were no apparent changes in the nature of the orbit cycles, scientists have long been attempting to discover what drove the changes to take place.

For this research, Dr Kender and his team drilled for deep-sea sediment in the Bering Sea, in conjunction with the International Ocean Discovery Program, and measured the chemistry of the fossil shells and sediments.

The team were able to create a detailed reconstruction of oceanic water masses through time - and found that the closure of the Baring Strait caused the subarctic North Pacific became stratified during this period of glaciation.

This stratification, that argue, would have removed CO2 from the atmosphere and caused global cooling.

Dr Kender added: "Today much of the cold water produced by sea ice action flows northward into the Arctic Ocean through the Bering Strait. As glaciers grew and sea levels fell around 1 million years ago, the Bering Strait would have closed, retaining colder water within the Bering Sea. This expanded watermass appears to have stifled the upwelling of deep CO2-rich water and allowed the ocean to sequester more CO2 out of the atmosphere. The associated cooling effect would have changed the sensitivity of Earth to orbital cycles, causing colder and longer glaciations that characterise climate ever since.

"Our findings highlight the importance of understanding present and future changes to the high latitude oceans, as these regions are so important for long term sequestration or release of atmospheric CO2."
-end-


University of Exeter

Related Global Warming Articles:

A new study provides a solid evidence for global warming
The new study allows a more accurate assessment of how much heat has accumulated in the ocean (and Earth) system.
Global warming hiatus disproved -- again
UC Berkeley scientists calculated average ocean temperatures from 1999 to 2015, separately using ocean buoys and satellite data, and confirmed the uninterrupted warming trend reported by NOAA in 2015, based on that organization's recalibration of sea surface temperature recordings from ships and buoys.
Report reassesses variations in global warming
Experts at the European Centre for Medium-Range Weather Forecasts (ECMWF) have issued a new assessment of temperature trends and variations from the latest available data and analyses.
Clouds are impeding global warming... for now
Lawrence Livermore National Laboratory researchers have identified a mechanism that causes low clouds -- and their influence on Earth's energy balance -- to respond differently to global warming depending on their spatial pattern.
Global warming's next surprise: Saltier beaches
Batches of sand from a beach on the Delaware Bay are yielding insights into the powerful impact of temperature rise and evaporation along the shore that are in turn challenging long-held assumptions about what causes beach salinity to fluctuate in coastal zones that support a rich network of sea creatures and plants.
More Global Warming News and Global Warming Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...