Nav: Home

Singapore researchers develop gold-complexed ferrocenyl phosphines as potent antimalarials

December 19, 2018

A team of researchers from the Singapore University of Technology and Design (SUTD) and Nanyang Technological University (NTU) have developed novel ferrocene-based molecules that impair the malaria parasite's metabolic function leading to parasite death.

Despite concerted efforts for malaria elimination, this deadly disease remains a major health threat to the developing world. The causative agent known as Plasmodium is highly proactive in establishing and sustaining the infection in humans leading to complex clinical manifestations. Making the matter worse, Plasmodium is gaining resistance to almost all clinical antimalarial drugs available in the market, and there is a need to develop new and better antimalarials.

Towards this end, in a collaborative research study between SUTD and NTU, a panel of novel chemical compounds categorised as ferrocenyl phosphines was developed as potent antimalarial drugs. The NTU team led by Dr Sumod A. Pullarkat from School of Physical and Mathematical Sciences synthesised the small molecule inhibitors. The antimalarial testing and the mechanism of action studies were subsequently carried out at SUTD under the supervision of Assistant Professor Dr Rajesh Chandramohanadas.

From this study, the researchers identified several molecules that exhibited impressive antimalarial potency against standard laboratory as well as drug-resistant strains of human malaria parasites. The top inhibitory molecule, known as G3, is a gold complexed ferrocinyl phosphine derivative, which is potent against metabolically active trophozoite stages of the parasite. Treatment of malaria parasites with G3 demonstrated compromised digestive vacuole wherein the parasite degrades human hemoglobin to facilitate growth and proliferation towards sustained infection.

Dr Pullarkat stated: "From a chemist's point of view, the step-by-step introduction of pharmacophores in a novel chemical framework permitted us the opportunity to systematically evaluate the function of each incorporated component in rendering antimalarial activity, across various stages of parasite development."

Dr Chandramohanadas added: "It is intriguing to learn how chemically diverse small molecules interfere with hemoglobin metabolism, a hallmark of malaria infection. Furthermore, such studies allow us to understand the cellular level changes arising from drug treatment, some of which can be leveraged for prioritising novel antimalarials, in view of rapidly evolving drug resistance."
-end-
This research appeared in scientific journal Dalton Transactions published by the Royal Society of Chemistry and the first authors are graduate students Mr. Gowtham Subramanian (SUTD) and Mr. Abdul Sadeer (NTU).

Singapore University of Technology and Design

Related Parasite Articles:

New research shows how the malaria parasite grows and multiplies
Scientists have made a major breakthrough in understanding how the parasite that causes malaria is able to multiply at such an alarming rate, which could be a vital clue in discovering how it has evolved, and how it can be stopped.
Malaria parasite lives on the edge
The parasite that causes malaria expresses genes that code for the proteins it will need in later life stages, but uses two separate schemes to prevent these proteins from actually being made until they are needed.
Parasite paralysis: A new way to fight schistosomiasis?
Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems.
Novel compound interrupts malaria parasite's lifecycle
Compound inhibits key enzymes, interrupting the parasite's lifecycle in human organisms and preventing transmission to vector insects.
Sweet success of parasite survival could also be its downfall
University of York scientists are part of an international team which has discovered how a parasite responsible for spreading a serious tropical disease protects itself from starvation once inside its human host.
Decoding the complex life of a simple parasite
Scientists decode the genome sequence of one of nature's most complex parasites, dicyemids.
How the mosquito immune system fights off the malaria parasite
A new study describes the way mosquito immune systems fight malaria parasites using various waves of resistance.
Cryptosporidium parasite detected in Minnesota groundwater
When consumed in contaminated water, the microscopic parasite Cryptosporidium can cause symptoms of stomach cramps, diarrhea and fever.
Male birth control for the malaria parasite
Disrupting two genes involved in the preservation of RNA molecules inhibits the ability of the male form of the malaria parasite to mature and be transmitted from human blood into mosquitoes, interrupting a key stage in the parasite's life-cycle and cutting off an important step in the spread of the disease.
Co-evolution between a 'parasite gene' and its host
A Danish research team has delineated a complex symbiosis between a 'parasitic' noncoding RNA gene and its protein coding 'host' gene in human cells.
More Parasite News and Parasite Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.