Scientists to give artificial intelligence human hearing

December 19, 2018

Russian scientists have come closer to creating a digital system to process speech in real-life sound environment, for example, when several people talk simultaneously during a conversation. Researchers of Peter the Great St. Petersburg Polytechnic University (SPbPU), a Project 5-100 participant, have simulated the process of the sensory sounds coding by modelling the mammalian auditory periphery. The current results of this study were published in a scientific article "Semi-supervised Classifying of Modelled Auditory Nerve Patterns for Vowel Stimuli with Additive Noise".

According to the SPbPU experts, the human nervous system processes information in the form of neural responses. The peripheral nervous system, which involves analyzers (particularly visual and auditory) provide perception of the external environment. They are responsible for the initial transformation of external stimuli into the neural activity stream and peripheral nerves ensure that this stream reaches to the highest levels of the central nervous system. This lets a person qualitatively recognize the voice of a speaker in an extremely noisy environment. At the same time, according to researchers, existing speech processing systems are not effective enough and require powerful computational resources.

To solve this problem, the research was conducted by the experts of the 'Measuring information technologies department at SPbPU. The study is funded by the Russian Foundation for Basic Research . During the study, the researchers developed methods for acoustic signal recognition based on peripheral coding. Scientists will partially reproduce the processes performed by the nervous system while processing information and integrate this process into a decision-making module, which determines the type of the incoming signal.

"The main goal is to give the machine human-like hearing, to achieve the corresponding level of machine perception of acoustic signals in the real-life environment," said the project lead Anton Yakovenko. According to Yakovenko, the examples of the responses to vowel phonemes given by the auditory nerve model created by the scientists are represented the source dataset. Data processing was carried out by a special algorithm, which conducted structural analysis to identify the neural activity patterns the model used to recognize each phoneme. The proposed approach combines self-organizing neural networks and graph theory. According to the scientists, analysis of the reaction of the auditory nerve fibers allowed to identify vowel phonemes correclty under significant noise exposure and surpassed the most common methods for parameterization of acoustic signals. The SPbPU researchers believe that the methods developed should help create a new generation of neurocomputer interfaces, as well as ' provide better human-machine interaction. In this regard, this study has a great potential for practical application: in cochlear implantation (surgical restoration of hearing), separation of sound sources, creation of new bioinspired approaches for speech processing, recognition and computational auditory scene analysis based the machine hearing principles.

"The algorithms for processing and analysing big data implemented within the research framework are universal and can be implemented to solve the tasks that are not related to acoustic signal processing," said Anton Yakovenko. He added that one of the proposed methods was successfully applied for the network behavior anomaly detection.
-end-
Project 5-100: Starting from 2013, Russia has been implementing Project 5-100, - a state support program for Russian universities. Its goal is to raise the standing of Russian higher education and have at least five member universities in the top-100 of three respected world rankings.

Peter the Great Saint-Petersburg Polytechnic University

Related Nervous System Articles from Brightsurf:

Chikungunya may affect central nervous system as well as joints and lungs
Investigation conducted by international group of researchers showed that chikungunya virus can cause neurological infections.

Glial cells play an active role in the nervous system
Researchers at M√ľnster University, Germany, have discovered that glial cells - one of the main components of the brain -not only control the speed of nerve conduction, but also influence the precision of signal transduction in the brain.

Protein produced by the nervous system may help treatments for inflammatory diseases
A Rutgers-led team discover a protein produced by nervous system may be key to treating inflammatory diseases like asthma, allergies, chronic fibrosis and chronic obstructive pulmonary disease (COPD)

COVID-19 may attack patients' central nervous system
''There may be more central nervous system penetration of the virus than we think based on the prevalence of olfaction-associated depressed mood and anxiety and this really opens up doors for future investigations to look at how the virus may interact with the central nervous system,'' explains Ahmad Sedaghat, MD, PhD.

Lifting weights makes your nervous system stronger, too
Gym-goers may get frustrated when they don't see results from weightlifting right away, but their efforts are not in vain: the first few weeks of training strengthen the nervous system, not muscles.

COVID-19 threatens the entire nervous system
A new review of neurological symptoms of COVID-19 patients in current scientific literature reveals the disease poses a global threat to the entire nervous system.

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.

Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.

Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.

Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.

Read More: Nervous System News and Nervous System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.