Nav: Home

Study finds gaba cells help fight alcoholism

December 19, 2018

Scientists of the Higher School of Economics, Indiana University, and École normale supérieure clarified how alcohol influences the dopamine and inhibitory cells in the midbrain that are involved in the reward system and the formation of dependency on addictive drugs. The results of the study were published in the article 'Dynamical ventral tegmental area circuit mechanisms of alcohol-dependent dopamine release.'

Let's say you drink some coffee to get an energy boost. At the same moment, a burst of dopamine is released in your midbrain that acts as positive reinforcement of your action. Over time, the brain becomes conditioned to the stimulus and raises the dopamine level in advance - as soon as you simply smell the coffee or approach a coffee shop. This is how the body learns through reinforcement. The ventral tegmental area (VTA) - over 50 percent of which is composed of dopaminergic neurons - plays a decisive role in this process.

Neurotransmitter dopamine is a biologically active chemical that transmits signals from one nerve cell to another. Dopamine acts on the brain's 'motivation centre', eliciting either a sense of anticipation of pleasure from a particular action, or the pleasure sensation itself if the pleasurable event occurs unexpectedly. But there is a particular link between dopamine and a number of addictive substances. In particular, alcohol directly affects the activity of dopamine nuclei and triggers the release of a burst of dopamine. This means that, regardless of how alcohol affects the rest of the body, the brain responds to it with positive reinforcement.

Alcohol has another characteristic as well: it influences how gamma-aminobutyric acid (GABA) receptors carry out their normal function of inhibiting cells from releasing dopamine. The mathematical model developed by researchers at HSE and Indiana University provides an accurate representation of the way alcohol, dopamine, and GABA cells interact.

The structure of the inhibitory network's activity - that is, how that activity arises and functions - determines the effect that GABA cells have on dopamine neurons. From 30 to 60 GABA cells in the VTA are connected to every dopamine cell. (This is generally true for GABA cells in the VTA, from outside the VTA this is a much larger number.) When all of those inhibitory cells function asynchronously, they inhibit dopamine activity. According to computational modelling, the reverse is also true: when inhibitory cells synchronize, the dopamine level increases. Researchers found that alcohol helps change the inhibitory network from an asynchronous to a synchronous state - that is, it ceases to inhibit dopamine and stimulates its release instead.

This discovery could help in the treatment of alcohol dependence. 'Our model suggests that targeted pharmacological work with dopamine is possible,' said Boris Gutkin, a co-author of the article and a leading research fellow with the HSE Centre for Cognition and Decision Making. 'By blocking the synchronization of the inhibitory GABA network, we can influence the dopamine reactions alcohol causes.'
-end-


National Research University Higher School of Economics

Related Dopamine Articles:

Brain scans show dopamine levels fall during migraine attacks
Using PET scans of the brain, University of Michigan researchers showed that dopamine falls and fluctuates at different times during a migraine headache.
Hard choices? Ask your brain's dopamine
Salk researchers learn how dopamine governs ongoing decisions, yielding insights into Parkinson's, drug addiction.
Alcoholism may be caused by dynamical dopamine imbalance
Researchers from the Higher School of Economics, Ecole Normale Supérieure, Paris, Indiana University and the Russian Academy of Sciences Nizhny Novgorod Institute of Applied Physics have identified potential alcoholism mechanisms, associated with altered dopaminergic neuron response to complex dynamics of prefrontal cortex neurones affecting dopamine release.
Precise technique tracks dopamine in the brain
MIT researchers have devised a way to measure dopamine in the brain much more precisely than previously possible, which should allow scientists to gain insight into dopamine's roles in learning, memory, and emotion.
Neurotrophic factor GDNF is an important regulator of dopamine neurons in the brain
New research results are expanding our understanding of the physiological role of the glial cell line-derived neurotrophic factor GDNF in the function of the brain's dopamine systems.
More Dopamine News and Dopamine Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...