Nav: Home

From a plant sugar to toxic hydrogen sulfide

December 19, 2018

In a doctoral research project conducted at the Department of Biology, the degradation of the dietary sugar sulfoquinovose by anaerobic bacteria to toxic hydrogen sulfide was described for the first time - increased production of hydrogen sulfide in the human intestinal system has been associated with inflammatory bowel disease and colon cancer.

Sulfoquinovose is a sugar found in plants, which contains sulfur. As a constituent of green-vegetable diets, for example in spinach and salad, it is also found in the human intestinal system - an environment without oxygen - and therefore doctoral researcher Anna Burrichter wanted to answer the following question: What happens when anaerobic bacteria degrade sulfoquinovose in the absence of oxygen? She discovered a new type of metabolism that transforms sulfoquinovose into hydrogen sulfide (H2S). So far, these results have been obtained from a laboratory model system. In future studies, the researchers will have to examine whether sulfoquinovose in the intestine is indeed metabolized to hydrogen sulfide, which is a toxic compound for humans. The study was conducted by the research team of Dr David Schleheck, and the results have been published in the current issue of the journal Frontiers in Microbiology.

Anna Burrichter succeeded in discovering an entirely novel bacterial degradation pathway that involves three individual discoveries: the discovery of a new link in the biological sulfur cycle, the discovery of a new type of fermentation in Escherichia coli, the best-studied model organism that was also used in this study, and the discovery of a so far unknown energy metabolism in sufite-respiring bacteria, in the Desulfovibrio species.

"Without oxygen, the degradation pathways are completely different. In the context of sulfoquinovose, we discovered a novel type of fermentation in Escherichia coli" says Anna Burrichter. Along with the sulfur-containing degradation product that is formed in this first degradation step, dihydroxypropane sulfonate, the researchers found a second bacterium, Desulfovibrio, which can utilize this intermediate for anaerobic respiration, the so-called sulfite reduction. This type of respiration with the organically-bound sulfur as electron acceptor instead of oxygen is described in detail for the first time in Anna Burrichter's thesis. "We thought that hydrogen sulfide may be the end product, but it had never been proven before, and no one knew which bacteria and enzymes may catalyse these reactions", the biologist says.

The next step now is to transfer the results of the laboratory model to the human intestine. "We want to investigate if these degradation pathways can also be found in the intestine and how much they contribute to the overall production of hydrogen sulfide, depending on the diet", says David Schleheck, whose research team has been supported by the Heisenberg Programme of the German Research Foundation (DFG). Previously it was assumed that organosulfonate substrates, such as taurine, are transformed into hydrogen sulfide mainly from meat-rich and high-fat diets. The new findings now suggest that organosulfonates from vegetarian food, that is sulfoquinovose, can be degraded to hydrogen sulfide as well.

Anna Burrichter's doctoral thesis is a promising basis for further research in this area. "Now we know the individual steps of the degradation pathway and the enzymes and genes involved, and therefore, now we know what we have to search for", concludes Anna Burrichter. The production of hydrogen sulfide in general can contribute to inflammatory bowel disease and colon cancer. However, it is also assumed that hydrogen sulfide, at least at low concentrations in the intestine, could as well have beneficial effects for our health. David Schleheck: "To better understand the human microbiome and the effects of hydrogen sulfide, it is essential to know all the pathways that can lead to hydrogen sulfide production. Only then one might be able to better manage the production of hydrogen sulfide in the intestine".
To conduct this study, the research team Microbial Ecolocy collaborated with the teams of Dr Thomas Huhn (Department of Chemistry), Professor Dieter Spiteller (Department of Biology) and Dr Paolo Franchini (Genomics Center).

Key facts:
  • Original publication: Anna Burrichter, Karin Denger, Paolo Franchini, Thomas Huhn, Nicolai Müller, Dieter Spiteller and David Schleheck, Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Frontiers in Microbiology, November 2018, Volume 9.
  • The bacterial degradation of the plant sugar sulfoquinovose to hydrogen sulfide is described for the first time.
  • Study was conducted in the context of biologist Anna Burrichter's doctoral thesis.
  • Collaboration of researchers from the Departments of Biology and Chemistry and the Konstanz Research School Chemical Biology (KoRS-CB).
  • Funded by the Heisenberg Programme of the German Research Foundation (DFG), the Konstanz Research School Chemical Biology (KoRS-CB) and the Konstanz Young Scholar Fund (YSF).

Note to editors:

You can download photos here:
The picture shows the degradation of sulfoquinovose (SQ) by Escherichia coli to a sulfur-containing intermediate (DHPS), which is excreted. Another bacterium, Desulfovibrio, utilizes this intermediate for anaerobic respiration and produces toxic hydrogen sulfide (H2S).
Copyright: Daniel Schleheck / Frontiers Microbiology 2018
Anna Burrichter, Dr. Daniel Schleheck.
Photo: University of Konstanz


University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603

University of Konstanz

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...