Nav: Home

How to spot every solar panel in the United States

December 19, 2018

Solar panels now account for over 10% of total electricity generation in some U.S. states, such as California. But policy-makers, utility companies, and engineers still find it difficult to put an accurate number on the country's total solar power installation, let alone to describe what factors make solar power thrive in certain areas and not others. Now, researchers at Stanford University have developed a new tool and accompanying open access website that identifies solar panels from high-resolution satellite data using automated image analysis, giving them unprecedented insight into the societal trends that drive solar power adoption. Their work appears December 19 in the journal Joule.

The tool, dubbed DeepSolar by its developers, including co-first-author doctoral students Jiafan Yu and Zhecheng Wang, scans high-resolution images covering the entire United States for solar panels, registers their locations, and calculates their sizes. "Previous algorithms were so slow that they would have needed at least a year of computational time to find every solar panel across the United States, but DeepSolar requires a fraction of that time," says co-senior author Ram Rajagopal, a civil engineering professor at Stanford.

"With these methods, we can not only maintain and update a high-fidelity database of solar installations, but also correlate them at the census-tract level with the amount of incoming solar radiation as well as non-physical factors such as household income and education level," adds co-senior author Arun Majumdar, a mechanical engineering professor at Stanford and co-Director of the Precourt Institute for Energy.

All told, the authors located 1.47 million individual solar installations nationwide, including rooftop setups, solar farms, and utility-scale systems. Before DeepSolar, Rajagopal and Majumdar say, the decentralization of solar power meant that there was no comprehensive way to catalog the photovoltaic panels strewn atop homes and businesses, limiting understanding of American solar deployment at an aggregate level.

One area where DeepSolar could make an immediate impact is in guiding upgrades meant to make the American power grid more compatible with solar sources, which are intermittent due to daily and seasonal fluctuations in incoming sunlight. "Now that we know where the solar panels are, or are likely to be in the future, we can feed that information into questions of modeling the electricity system and predicting where storage units and substations should go," says Majumdar.

It could also come in handy for pointing out areas that are ripe for new solar deployment. The researchers used their results to extract correlations between solar installation levels and population density, household income, and other variables, creating a model that can predict which geographic regions are most likely to adopt solar technology based on socioeconomic factors. "Utilities, companies that install solar panels, even community planners that are thinking about sustainability, they all can benefit from this high-resolution spatial data and a website where they can explore and analyze the different trends involved," Rajagopal says.

Moving forward, the researchers plan to expand the DeepSolar database to include solar installations in other countries with suitably high-resolution satellite images. They also intend to add in features that can calculate a solar panel's angle and orientation from image analysis alone, allowing for more complete and accurate estimation of power-generating capacity in addition to the basic location and size data already collected.
The open access DeepSolar website can be found here:

Joule, Yu & Wang et al.: "DeepSolar: A Machine Learning Framework to Efficiently Construct Solar Deployment Database in the United States" DOI: 10.1016/j.joule.2018.11.021

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Solar Panels Articles:

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.
Ben-Gurion University researchers develop new method to remove dust on solar panels
Particle removal increased from 41% on hydrophilic smooth Si wafers to 98% on superhydrophobic Si-based nanotextured surfaces.
Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.
Study: Even short-lived solar panels can be economically viable
A new study shows that, contrary to widespread belief within the solar power industry, new kinds of solar cells and panels don't necessarily have to last for 25 to 30 years in order to be economically viable in today's market.
Researchers develop a better way to harness the power of solar panels
Researchers at the University of Waterloo have developed a way to better harness the volume of energy collected by solar panels.
Installing solar panels on agricultural lands maximizes their efficiency, new study shows
A new study finds that if less than 1% of agricultural land was converted to solar panels, it would be sufficient to fulfill global electric energy demand.
Solar panels cast shade on agriculture in a good way
Combining solar panel (photovoltaic) infrastructure and agriculture creates a mutually beneficial relationship.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
Breakthrough material could lead to cheaper, more widespread solar panels and electronics
Two physics research groups at the University of Kansas have generated free electrons from organic semiconductors when combined with a single atomic layer of molybdenum disulfide, a recently discovered two-dimensional semiconductor.
What happens when schools go solar?
Rooftop solar projects at schools could reduce harmful air pollution, help the environment and enhance student learning while cutting electricity costs, a new study finds.
More Solar Panels News and Solar Panels Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at