Nav: Home

Getting yeast to make artificial sweets

December 19, 2018

The holiday season can be a time of excess, but low- or no-calorie sweeteners could help merry-makers stay trim. Stevia is a zero-calorie sweetener that is sometimes called "natural" because it is extracted from the leaves of a South American plant. Now, a report in ACS Synthetic Biology describes a way to prepare large quantities of stevia using yeast, which would cut out the plant middleman and could lead to a better tasting product.

In the stevia plant, a series of enzymes turn glucose into molecules called glucosides that retain sugary sweetness without the calories. The plant produces a variety of glucosides, but some have a bitter aftertaste. Others are minor glucosides in the plant, but because of their pleasant properties, they could be developed into next-generation sweeteners. So, to make a sweeter sweetener and to make lots of it, Vincent J.J. Martin and colleagues wanted to take the glucoside-making machinery out of the plant and into yeast, where they could more easily tweak enzymes to optimize stevia production.

The researchers created a platform for testing enzyme combinations to see which mixture produced the highest yield of stevia molecules in yeast. They started with the enzymes from the stevia plant, but also used some related enzymes from a plant in the mustard family, which improved yield. The authors say that their results represent a step toward the commercial production of a new generation of better-tasting no-calorie sweeteners.
-end-
The authors acknowledge funding from Concordia University, Canada Foundation for Innovation and Evolva.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...