Nav: Home

Study links nutrients in blood to better brain connectivity, cognition in older adults

December 19, 2018

CHAMPAIGN, Ill. -- A new study links higher levels of several key nutrients in the blood with more efficient brain connectivity and performance on cognitive tests in older adults.

The study, reported in the journal NeuroImage, looked at 32 key nutrients in the Mediterranean diet, which previous research has shown is associated with better brain function in aging. It included 116 healthy adults 65-75 years of age.

"We wanted to investigate whether diet and nutrition predict cognitive performance in healthy older adults," said University of Illinois postdoctoral researcher Christopher Zwilling, who led the study with U. of I. psychology professor Aron Barbey in the Beckman Institute for Advanced Science and Technology.

The analysis linked specific patterns of a handful of nutrient biomarkers in the blood to better brain health and cognition. The nutrient patterns included omega-3 fatty acids, which are abundant in fish, walnuts and Brussels sprouts; omega-6 fatty acids, found in flaxseed, pumpkin seeds, pine nuts and pistachios; lycopene, a vivid red pigment in tomatoes, watermelon and a few other fruits and vegetables; alpha- and beta-carotenoids, which give sweet potatoes and carrots their characteristic orange color; and vitamins B and D.

The researchers relied on some of the most rigorous methods available for examining nutrient intake and brain health, Barbey said. Rather than asking participants to answer food-intake surveys, which require the accurate recall of what and how much participants ate, the team looked for patterns of nutrient "biomarkers" in the blood. The team also used functional magnetic resonance imaging to carefully evaluate the efficiency with which various brain networks performed.

"The basic question we were asking was whether diet and nutrition are associated with healthy brain aging," Barbey said. "And instead of inferring brain health from a cognitive test, we directly examined the brain using high-resolution brain imaging."

Functional MRIs can indicate the efficiency of individual brain networks, he said.

"Efficiency has to do with how information is communicated within the network," Barbey said. "We looked at 'local efficiency' - how well information is shared within a spatially confined set of brain regions - and also 'global efficiency,' which reflects how many steps are required to transfer information from any one region to any other region in the network.

"If your network is more efficiently configured, then it should be easier, on average, to access relevant information and the task should take you less time," he said.

Participants also completed several cognitive tests.

The analysis found a robust link between higher levels of several nutrient biomarkers in the blood and enhanced performance on specific cognitive tests. These nutrients, which appeared to work synergistically, included omega-3 and omega-6 fatty acids, carotenoids, lycopene, riboflavin, folate, vitamin B12 and vitamin D.

The analysis also revealed that a pattern of omega-3s, omega-6s and carotene was linked to better functional brain network efficiency.

Different nutrient patterns appeared to moderate the efficiency in different brain networks. For example, higher levels of omega-3 fatty acids paralleled the positive relationship between a healthy frontoparietal network and general intelligence. The frontoparietal network supports the ability to focus attention and engage in goal-directed behavior.

"Our study suggests that diet and nutrition moderate the association between network efficiency and cognitive performance," Barbey said. "This means that the strength of the association between functional brain network efficiency and cognitive performance is associated with the level of the nutrients."

To test the stability of the nutrient-biomarker patterns over time, the researchers invited 40 participants back for a second analysis roughly two years after the first tests. Similar nutrient patterns persisted in this subset of the original group.

"Because we're investigating how groups of nutrients work together, we're getting a more accurate snapshot of how the body processes these nutrients and how they can impact the brain and cognitive health," Zwilling said. "Of course, future studies are needed to affirm and extend these results."
-end-
Abbott Nutrition supported this work through the Center for Nutrition, Learning, and Memory at the University of Illinois, of which Barbey is an affiliate. Barbey is a professor in the Beckman Institute and an affiliate of the Carl R. Woese Institute for Genomic Biology at the U. of I. He directs the Center for Brain Plasticity, a partnership between the Beckman Institute and the Interdisciplinary Health Sciences Institute. He also serves on the scientific advisory boards of the Institute of Inflammation and Ageing at the University of Birmingham, U.K.; and Natrol, a vitamin and supplement producer.

Editor's notes:

To reach Christopher Zwilling, email zwillin1@illinois.edu.

To reach Aron Barbey, call 217-244-2551; email barbey@illinois.edu.

The paper "Nutrient biomarker patterns, cognitive function and fMRI measures of network efficiency in the aging brain" is available online and from the U. of I. News Bureau.

DOI: 10.1016/j.neuroimage.2018.12.007

University of Illinois at Urbana-Champaign

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.