Nav: Home

The coming of age of plasma physics

December 19, 2018

Once upon a time, people thought that electrons and ions always stuck together, living happily ever after. However, under low density of matter or high temperatures, the components of matter are no longer bound together. Instead, they form plasma, a state of matter naturally occurring in our universe, which has since been harnessed for everyday applications such as TV screens, chip etching and torches, but also propulsion and even sustained energy production via controlled fusion.

In a fascinating editorial for a special plasma issue of EPJ H, called "Plasma physics in the 20th century as told by players", three physicists share their perspectives on key events in the early history of plasma physics, in the first half of the 20th century. First, Patrick Diamond, from the University of California San Diego, USA, shares his recollections of the early days of wireless transmission and the description of the 'Heavyside Layer' (the electrically conducting layer of the upper atmosphere, which transmits radio waves). In turn, Yves Pomeau from the Ecole Polytechnique in Palaiseau, France, talks about the role of Irving Langmuir in the development of plasma physics theory, namely his calculation of the frequency of oscillation of electrons in a plasma environment with much heavier ions. Lastly, Uriel Frisch from the University Cote D'Azur in Nice, France, describes the birth of nuclear fusion theory.

For those interested in reading further about plasma, this EPJ H special issue covers both the fundamentals and the applications related to magnetic-confinement-based controlled fusion between 1950 and 2000. The story ranges from the Soviet era and Russian efforts to the standpoints of French, Japanese, Chinese and American physicists involved in building tokamaks around the world - and more recently ITER- to experiment with controlled fusion, which is governed by plasma physics.
-end-
References: P. Diamond, U. Frisch, Y. Pomeau (2018), Editorial introduction to the special issue "Plasma physics in the 20th century as told by players", European Physical Journal H, DOI 10.1140/epjh/e2018-90061-5

Springer

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...