Nav: Home

Process makes stem-cell-derived heart cells light up

December 19, 2018

A faster, more cost-efficient, and more accurate method of examining the effectiveness of human pluripotent stem-cell-derived cardiac muscle cells has been discovered, according to researchers from Penn State.

Human pluripotent stem cells (hPSCs) -- human embryonic stem cells and induced pluripotent stem cells -- can be induced to produce other types of human cells through stem cell differentiation. The researchers looked at cardiac muscle cells -- cardiomyocytes (CMs) -- in this study.

The goal is to use these cells to treat cardiac conditions, but first the researchers must determine the cell's functionality through characterization, which involves examining how well the cells were modified, and whether or not they are mature, functioning CMs. One clear sign that the cells are functioning is if they are beating, because CMs beat like a heart does. Current methods for determining functionality include using a force transducer, which studies the mechanics of a single muscle cell, and using calcium imaging. However, there are issues with these methods.

"CMs derived from hPSCs hold tremendous promise for cell-based therapies for heart diseases," said Xiaojun Lance Lian, assistant professor of biomedical engineering and primary investigator on the project. "Nevertheless, current methods for CM characterization cause undesirable impacts on the cells' functionality and are expensive and time-consuming."

To combat these issues, Lian and his colleagues developed a process that is non-invasive and less likely to aversely effect the CMs functionality. The researchers used CRISPR-Cas9, a genome-editing tool, to generate a calcium-indicating reporter stem cell line, which is a type of stem cell line that is more easily analyzed for CM functionality than other stem cell lines.

To create this stem cell line, prior to the stem cell differentiation into CMs, the researchers used CRISPR-Cas9 to insert a calcium indicator protein called GCaMP6s into the stem cells. The GCaMP6 protein enables the stems cells to be modified into CMs that can be directly characterized by fluorescence intensity. The intensity of the fluorescence correlates with mechanical strain detected by a video microscope analysis. This analysis shows the cells' responses to cardiac drugs.

"Our system is well-established, cost-effective and very sensitive, so it is a more advanced method of CM characterization," Yuqian Jiang, doctoral student in biomedical engineering. "Since it is non-invasive, it is also much better for the CMs and their functionality."

And because of the many benefits of the system, the process can further contribute to improved disease modeling and drug screening for treating cardiac diseases, Lian said.

Looking ahead, the researchers want to construct an "on switch" for the GCaMP6s protein by adding doxycycline, which will activate a switcher protein known as Tet-On.

The research team is also exploring the use of this particular GCaMP6s-enhanced stem cell line for other research.

"We can also use this stem cell line for imaging other lineages, like neurons and astrocytes," Jiang said.
-end-
Other authors include Chuanxin Chen, Penn State visiting scholar of biomedical engineering; Lauren Randolph, Penn State doctoral student in bioengineering; Jing Du, Penn State assistant professor of mechanical and nuclear engineering; Yuxiao Zhou, Penn State doctoral student in mechanical engineering; and Xiaoping Bao, postdoctoral fellow at the University of California-Berkeley.

This research, recently published in iScience, was funded by Penn State Startup funding and a three-year, $567,000 National Institutes of Health Trailblazer Award.

Penn State

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...