Bacteria spread by ticks affected by humidity and mutual competition

December 19, 2019

Researchers at the University of Helsinki, the University of Zurich and the University of Exeter have carried out modelling on how environmental factors affect the occurrence of human-pathogenic bacteria found in the sheep tick (Ixodes ricinus), a tick species common in Europe.

The researchers collected sheep ticks in the Swiss Alps from valleys up to the limit of their area of distribution, identifying all possible pathogenic bacteria living inside the ticks. A number of Borrelia species, which cause Lyme borreliosis, and Rickettsia species, which cause spotted fever, were found in the ticks.

According to the researchers, the modelling did not show any single environmental factor to clearly promote or impair the pathogens. Individual pathogens borne by ticks had different reactions to their environmental conditions, which makes it difficult to assess the impact of climate change.

"For example, temperature has a negligible effect on the kinds of pathogenic bacteria ticks have. More significant are factors related to the humidity of the surroundings, such as the aspect and slope of the sites. Borrelia afzelii is more common in slopes facing north, which are more humid than the hotter southern ones, while the Rickettsia species were more prevalent in steeper slopes that are also drier due to stronger water run-off," explains Tuomas Aivelo, a postdoctoral researcher at the Faculty of Biological and Environmental Sciences, University of Helsinki.

Collecting samples from different elevational gradients is a practical way of studying the effects of environmental conditions.

"Despite the short distances, ticks from varying habitats are easily comparable. A change of a single kilometre in the vertical is the equivalent of a roughly 1,000-kilometre transition between south and north. In the lowest reaches of the study area, the average temperature corresponds with a hotter than average Finnish summer day, whereas the summer temperatures in the upper reaches of the area over a kilometre higher resemble an average summer in central Finland."

The researchers found that the ticks were likely to be infected with many pathogens simultaneously. In other words, they may promote co-infection.

"On the other hand, ticks infected with Spiroplasma bacteria had much fewer human pathogens, such as Borrelia bacteria. A Spiroplasma infection is known to protect mosquitos against many parasites and pathogens, making a similar phenomenon possible also in ticks," Aivelo points out.
-end-


University of Helsinki

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.