Nav: Home

A discovery helps the development of a topological quantum computer and dark matter detector

December 19, 2019

The Laboratory of the Electronic and Spin Structure of Nanosystems of St Petersburg University is headed by Eugene Chulkov, professor at the University of the Basque Country. Researchers from the laboratory note that they have been working to achieve this result for several years. First, the existence of single crystals with unusual properties was predicted in theory. Then they were synthesised in laboratory at Technische Universität Dresden and Azerbaijan State Oil and Industry University. The new material turned out to have simultaneously the properties of an antiferromagnet and a topological insulator.

Ferromagnets are materials in which the magnetic moments of all atoms are aligned. They create a macroscopic magnetic field in the material. For example, computer hard drives are made of ferromagnets. However, everything is different in antiferromagnets: the magnetic moments of the atoms are oppositely directed. They therefore do not create a stray magnetic field, which, in fact, negatively affects the elements of electronics. It is antiferromagnets that might be used to produce storage devices in the future. Unlike ferromagnets, such memory devices can be put close to each other as many times as you wish. And this will make your computer more powerful. Additionally, the resonant frequency of antiferromagnets is not gigahertz, but terahertz. This means that devices based on them will work 1,000 times faster than classical ones. By the way, a prototype of an element of antiferromagnetic memory based on the new material MnBi2Te4 has been recently proposed in one research paper.

A discovered single crystal is also a topological insulator. It is a special material on the surface of which electrons behave in a fundamentally different way to how they do inside a single crystal. On the surface it is an extra fine conductive layer, and inside it is a semiconductor. It is these unique surface electrons, which form the so-called Dirac cone, that have been measured in the laboratory of St Petersburg University. What is important, even if the material surface is destroyed, it does not lose its properties and remains topologically protected. This property can be useful in the development of quantum computers. At present, one of the main problems in developing such computers is related to the fact that a qubit - a unit of information storage - is subject to decoherence. It means that, according to quantum laws, it collapses over time. However, if we make a qubit based on a topological insulator, hypothetically this problem can be avoided.

'This single crystal is also of interest because of the fact that it provides researchers with a whole class of new materials,' said Professor Aleksandr Shikin, the deputy head of the laboratory. 'If layers that are connected antiferromagnetically are separated by layers of a topological insulator, we can create unique magnetic characteristics of the material with a gradual transition from antiferromagnetism to two-dimensional ferromagnetism. This is a completely new system with new features, which, by and large, have not even been discovered yet.'

By the way, the physicists have already managed to observe the quantum anomalous Hall effect in these single crystals. In solid state physics, the ordinary Hall effect is that if an external voltage is applied to a material placed in a magnetic field, there appears a current perpendicular to this voltage. It is used, for example, in magnetometers in smartphones and in electronic ignition systems of internal combustion engines. There is also a quantum Hall effect. However, it is the quantum anomalous Hall effect that has never been observed before in systems where the magnetic layer is precisely ordered, as in a MnBi2Te4 single crystal. Since in this case the effect is possible without applying an external magnetic field, the new material becomes very promising for developing a wide variety of electronic devices. For example, another paper has already proposed a model of a topological spin field-effect transistor based on MnBi2Te4 material.

Additionally, as the researchers note, the single crystal that is obtained can give an impetus to the development of elementary particle physics. There is a hope that topological insulators will help experimentally detect Majorana fermions - specific particles that are their own antiparticles at the same time. They were hypothesised by the Italian physicist Ettore Majorana in the 1930s, but have not yet been discovered. According to theoretical studies, the Majorana fermion can exist as a quasiparticle in topological insulators. As a matter of fact, it is this particle that due to its topological protectability is an excellent candidate for a qubit in a quantum computer.

'Another interesting example is the theoretical work which states that it is possible to develop a dark matter detector based on our material,' said Ilya Klimovskikh, PhD and laboratory assistant. 'Since it is a magnetic topological insulator, it is possible to realise the phase of an axion insulator in it. On its basis it is possible to develop a dark matter detector with a certain range that does not exist yet. This is very unexpected, but such papers are likely to appear because the material has completely new and unique properties.'

At St Petersburg University, the researchers measured the magnetic characteristics and photoelectron spectra of the new single crystal. It was done using the equipment of the resource centres of the University Research Park: the Centre for Physical Methods of Surface Investigation and the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics. Interestingly, the preliminary version of the scientific article (preprint), which appeared in the public domain before publication, has been cited more than 60 times. In total, the scientific collaboration supervised by St Petersburg University Professor Evgeny Chulkov includes 22 research institutions from all over the world.

'So many institutions participating in a single publication in the field of condensed matter may seem unusual. However, to solve effectively complex problems in modern solid state science requires consolidated efforts of various highly professional teams. They include theorists, chemists, physicists and materials scientists. This trend will only grow stronger in the foreseeable future,' said Eugene Chulkov.
-end-
This research is supported by grants from: St Petersburg University (ID 40990069); the Russian Science Foundation (No 18-12-00062); the Russian Foundation for Basic Research (No 18-52-06009); and other scientific institutions.

St. Petersburg State University

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.