Form of severe malnutrition linked to DNA modification

December 19, 2019

A group led by researchers at Baylor College of Medicine has identified significant differences at the epigenetic level - the chemical tags in DNA that help regulate gene expression - between two clinically distinct forms of acute childhood malnutrition known as edematous severe acute malnutrition (ESAM) and non-edematous SAM (NESAM).

The researchers report in the journal Nature Communications that ESAM, but not NESAM, is characterized by a reduction in methyl chemical tags in DNA and complex changes in gene activity, including both enhanced and reduced gene expression. Some of the genes that lost their methyl tags have been linked to other disorders of nutrition and metabolism, such as abnormal blood sugar and fatty liver disease, conditions that also have been observed in ESAM. The findings support consideration of methyl-group supplementation in ESAM.

What is ESAM and NESAM?

"Severe acute childhood malnutrition presents in two clinically distinct forms: ESAM and NESAM," said corresponding author Dr. Neil Hanchard, assistant professor of molecular and human genetics and the USDA/ARS Children's Nutrition Research Center at Baylor. "ESAM is characterized by body swelling and extensive dysfunction of multiple organs, including liver, blood cells and the gut, as well as skin and hair abnormalities. NESAM, on the other hand, typically presents with weight loss and wasting."

The differences between ESAM and NESAM are still not fully explained despite decades of studies addressing this question. In the current study, Hanchard and his colleagues looked to better understand the conditions by investigating whether there were differences at the molecular level, specifically on DNA methylation.

Linking DNA modifications to ESAM

"The decision to look at DNA methylation was partly driven by previous studies looking at biochemical markers in these individuals. In particular, the turnover of a particular amino acid called methionine," said Hanchard.

Previous work has shown that methionine turnover is slower in ESAM than in NESAM. Methionine is a central ingredient of 1-carbon metabolism, a metabolic pathway that is key to DNA methylation. Lower methionine turnover suggested the possibility of alterations in DNA methylation.

"First, we conducted a genome-wide analysis of DNA methylation. When we found in children acutely ill with ESAM genes with levels of DNA methylation that were significantly different from those in NESAM patients, the levels were always lower. Of the genes analyzed, 161 showed a highly significant reduced level of methylation in ESAM, when compared to the same genes in NESAM," Hanchard said.

Interestingly, a group of adults who had recovered from having ESAM malnutrition in their childhood did not show the same reduction in DNA methylation the researchers observed in childhood acute cases. This suggested that lower DNA methylation was probably related to acute ESAM.

Gene expression examined

Knowing that DNA methylation helps regulate gene expression, Hanchard and his colleagues next investigated whether there were differences in gene expression between ESAM and NESAM. They found that reduced overall methylation in ESAM resulted in a complex pattern of gene expression changes. For some genes, having reduced methylation enhanced their expression, while for others it reduced it.

Among the genes that were highly affected by reduced methylation were some of those related to conditions such as blood sugar regulation, fatty liver disease and other metabolic problems, which are also commonly seen more often in ESAM than NESAM.

"Our findings contribute to a better understanding of the molecular events that likely result in the differences between ESAM and NESAM," Hanchard said. "Although we still don't know why malnutrition leads to ESAM in some children, while it results in NESAM in others, our findings suggest that, once ESAM gets on its way, methylation changes are likely involved in the clinical signs and symptoms of the condition. There is also evidence that individual genetic variation also influences the level of DNA methylation. Furthermore, I am excited about the possibility that altering the molecular outcome of malnutrition with specific interventions could one day help alter the clinical outcome."
Other contributors to this work include first author Katharina V. Schulze, Shanker Swaminathan, Sharon Howell, Aarti Jajoo, Natasha C. Lie, Orgen Brown, Roa Sadat, Nancy Hall, Liang Zhao, Kwesi Marshall, Thaddaeus May, Marvin E. Reid, Carolyn Taylor-Bryan, Xueqing Wang, John W. Belmont, Yongtao Guan, Mark J. Manary, Indi Trehan and Colin A. McKenzie.

For a complete list of author affiliations and financial support for this study, go to the published paper.

Baylor College of Medicine

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to