Nav: Home

New algorithm could mean more efficient, accurate equipment for Army

December 19, 2019

RESEARCH TRIANGLE PARK, N.C. (Dec. 19, 2019) - Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately. The algorithm could be used in a wide range of fields - from biology and astronomy to military applications and telecommunications.

Electromagnetic waves exist as radiation of energies from charges and other quantum processes. They include radio waves, microwaves, light and X-rays. Mobile phones communicate by transmitting radio waves.

It takes a tremendous amount of computer simulations to create a device like an MRI scanner that images the brain by detecting electromagnetic waves propagating through tissue. Those simulations can take days or months to identify how the electromagnetic waves will react when they encounter the materials in the device. Because of the cost, there is a limit to the number of simulations typically done for these devices.

With funding from the Army Research Office, in a study, published in the SIAM Journal on Scientific Computing, SMU (Southern Methodist University) researchers revealed a faster algorithm for these simulations. It is a more efficient and less expensive way to predict the behavior of waves.

"We can reduce the simulation time from one month, to maybe one hour," said lead researcher Wei Cai, SMU Clements Chair of applied mathematics. "We have made a breakthrough in these algorithms."

"Electromagnetic waves are central to many important applications in sensing, power, and communication. Being able to conduct related simulations faster and less expensively will have many military applications," said Dr. Joseph Myers, Army Research Office Mathematical Sciences Division chief. ARL is an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "For example, this work will help create a virtual laboratory for scientists to simulate and explore quantum dot solar cells, which could produce extremely small, efficient and lightweight solar military equipment."

The new algorithm modifies a mathematical method called the fast multipole method, or FMM, which was considered one of the top 10 algorithms in the 20th century.

Using this new algorithm, the computer simulations map out how materials in a device like semiconductor materials will interact with light, in turn giving a sense of what a particular wave will do when it comes in contact with that device.

An engineer or mathematician would be able to use this new algorithm to test a device whose job is to pick out a certain electromagnetic wave. For instance, it could be used to test designs for a solar light battery that lasts longer and is smaller than currently exists.

"To design a battery that is small in size, you need to optimize the material so that you can get the maximum conversion rate from the light energy to electricity," Cai said. "An engineer could find that maximum conversion rate by going through simulations faster with this algorithm."

The algorithm could also help an engineer design a seismic monitor to predict earthquakes by tracking elastic waves in the earth, Cai noted.

"These are all waves, and our method applies for different kinds of waves," he said. "There are a wide range of applications with what we have developed."

The computational system used for this project, the SMU MANEFRAME II, is descended from the Army high-performance computing system "Mana," formerly located at the Maui HPC Center in Hawaii, and donated and physically moved to SMU through the efforts of ARO and SMU.
-end-
The CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more effective to win our Nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

U.S. Army Research Laboratory

Related Algorithm Articles:

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.
New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.
Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.
New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.
A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.