Dangerous bone marrow, organ transplant complication explained

December 19, 2019

For the first time, scientists have discovered the molecular mechanism behind how a common virus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe. The finding could help researchers develop better drugs to prevent related transplant complications.

Cytomegalovirus, also known as CMV, is a common virus that infects more than half of U.S. adults by age 40. Although the vast majority of CMV infections don't cause obvious symptoms, the virus can cause serious illness and even death in patients who undergo transplants. One of the symptoms transplant patients experience is reduced blood cell production in bone marrow, which increases the risk of life-threatening bacterial and fungal infections.

"We've known for about 40 years that CMV is key to many of the complications transplant patients experience," said the study's lead researcher, Jay Nelson, Ph.D., professor, founder and director of Oregon Health & Science University's Vaccine & Gene Therapy Institute and a core scientist at OHSU Oregon National Primate Research Center. "But it wasn't until now that we were able to determine exactly how CMV causes these problems."

Physicians already prescribe antiviral drugs to reduce the amount of active CMV in a transplant patient's system. However, these drugs don't prevent reduced blood cell production. Nelson and his colleagues suspected the reason anti-CMV drugs don't work is because they target active infection. CMV can also be latent, meaning it's present but not actively creating an infectious virus.

The study's lead authors, Meaghan Hancock, Ph.D., and Lindsey Crawford, Ph.D., predicted that even when CMV is inactive, it still produces genetic material that maintains the virus in the cell and is involved in reduced blood production.

The research team identified a tiny piece of genetic material called microRNA US5-2, which specifically leads to the production of a cell-signaling protein called Transforming Growth Factor Beta, or TGF-?, which results in bone marrow suppression for some transplant patients.

Nelson and his colleague will now explore drugs that target the TGF-? protein and test its effectiveness against bone marrow suppression in animal models.
-end-
This research was supported by the National Institutes of Health under grants P01 A127335 and R01 A121640.

REFERENCE: Meaghan H. Hancock, Lindsey B. Crawford, Andrew H. Pham, Jennifer Mitchell, Hillary M. Struthers, Andrew D. Yurochko, Patrizia Caposio, Jay A. Nelson, "Human Cytomegalovirus miRNA Regulation of TGF-? Expression and Signaling Mediates Myelosuppression and Latency in CD34+ Hematopoietic Progenitor Cells," Cell Host & Microbe, Dec. 19, 2019, DOI: https://doi.org/10.1016/j.chom.2019.11.013

Oregon Health & Science University

Related Bone Marrow Articles from Brightsurf:

Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia
Researchers at the University of Helsinki and the Dana-Farber Cancer Institute have identified the mechanism behind bone marrow failure developing in children that suffer from Fanconi anaemia.

Nanoparticles can turn off genes in bone marrow cells
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells.

How stress affects bone marrow
Researchers from Tokyo Medical and Dental University (TMDU) identified the protein CD86 as a novel marker of infection- and inflammation-induced hematopoietic responses.

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.

Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.

Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.

Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.

Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.

Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.

Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.

Read More: Bone Marrow News and Bone Marrow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.