Nav: Home

Researchers directly measure 'Cheerios effect' forces for the first time

December 19, 2019

PROVIDENCE, R.I. [Brown University] -- There's an interesting fluid dynamics phenomenon that happens every morning in millions of cereal bowls. When there are just a few bits of cereal left floating on top of the milk, they tend to cluster together in the middle or around the edges of the bowl, rather than dispersing across the surface.

Now a team of Brown University researchers has developed a way to measure the forces involved in this type of clustering. It's the first time, the researchers say, that these forces have been experimentally measured in objects at the millimeter/centimeter scale. And the implications of the work go far beyond cereal bowls -- the results could be useful in guiding the self-assembly of micromachines or in designing microscale robots that operate in and around water.

"There have been a lot of models describing this Cheerios effect, but it's all been theoretical," said Ian Ho, an undergraduate student at Brown and lead author of a paper describing the work. "Despite the fact that this is something we see every day and it's important for things like self-assembly, no one had done any experimental measurements at this scale to validate these models. That's what we were able to do here."

The research is published in Physical Review Letters. Ho's co-authors were Giuseppe Pucci, a visiting scholar at Brown, and Daniel Harris, an assistant professor in Brown's School of Engineering.

The Cheerios effect arises from the interaction of gravity and surface tension -- the tendency of molecules on the surface of a liquid to stick together, forming a thin film across the surface. Small objects like Cheerios aren't heavy enough to break the surface tension of milk, so they float. Their weight, however, does create a small dent in the surface film. When one Cheerio dent gets close enough to another, they fall into each other, merging their dents and eventually forming clusters on the milk's surface.

In order to test just how strongly Cheerios -- and other objects in the Cheerio size and weight range -- attract each other, the researchers used a custom-built apparatus that uses magnetism to measure forces. The experiment involves two Cheerio-sized plastic disks, one of which contains a small magnet, floating in a small tub of water. Electrical coils surrounding the tub produce magnetic fields, which can pull the magnetized disk away while the other is held in place. By measuring the intensity of the magnetic field at the instant the disks begin moving away from each other, the researchers could determine the amount of attractive force.

"The magnetic field gave us a non-mechanical way of applying forces to these bodies," Harris said. "That was important because the forces we're measuring are similar to the weight of a mosquito, so if we're physically touching these bodies we're going to interfere with the way they move."

The experiments revealed that a traditional mathematical model of the interaction actually under-predicts the strength of the attraction when the disks are positioned very close together. At first the researchers weren't sure what was happening, until they noticed that as two disks draw closer, they start to tilt toward each other. The tilt causes the disk to push harder against the surface of the liquid, which in turn increases the force by which the liquid pushes back. That extra push results in a slightly increased attractive force between the disks.

"We realized that there was one extra condition that our model wasn't satisfying, which was this tilt," Harris said. "When we added that one ingredient to the model, we got much better agreement. That's the value of going back and forth between theory and experiment."

The findings could be useful in the design of microscale machines and robots, the researchers say. There's interest, for example, in using small spider-like robots that can skitter across the surface of water to do environmental monitoring. This work sheds light on the kinds of forces these robots would encounter.

"If you have multiple little machines moving around or two or more legs of a robot, you need to know what forces they exert on each other," Harris said. "It's an interesting area of research, and the fact that that we could contribute something new to it is exciting."
-end-


Brown University

Related Magnetic Field Articles:

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.