Scientists link common immune cell to failure of checkpoint inhibitors in lung cancer

December 19, 2019

For many lung cancer patients, the best treatment options involve checkpoint inhibitors. These drugs unleash a patient's immune system against their disease and can yield dramatic results, even in advanced cancers.

But checkpoint inhibitors come with a huge caveat: They only help a small subset of patients. Doctors struggle to predict who these patients are and -- just as important -- who they aren't.

Results from a new study published Dec. 19 in the journal JCI Insight could help improve those forecasts.

After analyzing tumor samples from 28 patients with non-small cell lung cancer, researchers linked a common immune cell with treatment failure. The culprit: neutrophils, the most abundant type of white blood cell.

The paper shows that the balance between neutrophils and another type of immune cell -- disease-fighting T cells -- could accurately predict which patients would respond or not. If more neutrophils than T cells were crowded into a tumor, the drugs did not curb the patients' cancers. But if the balance was reversed, checkpoint inhibitors revved up patients' immune systems against their disease.

"The study is the first to implicate neutrophils in the failure of checkpoint inhibitors," said senior author Dr. McGarry Houghton, a lung cancer immunologist at Fred Hutchinson Cancer Research Center. "Our findings also hint at a way to help patients who have this cellular signature."

In a mouse model of NSCLC, the researchers administered a drug that decreased the number of neutrophils in and around tumors. That in turn boosted the efficacy of checkpoint inhibitors -- T cells now had a clear path to attack diseased cells in the mice. The researchers now want to test this approach in NSCLC patients through a clinical trial.

"As the immunotherapy field has evolved, the main question has become: Can you identify people who will respond to these treatments?" Houghton said. "But here we're really interested in identifying the 80% of people who don't respond and finding new ways to help them."

Neutrophils are the most common white blood cell in the human body, which churns out billions of them a day. They play a vital role in the immune system, serving as first responders after infection or injury.

Early cancer researchers didn't think they played a role in the disease, Houghton said. "Cancer is a chronic disease, so people didn't think they would be very important because they don't live very long. How could they influence cancer if they're only living a few hours?"

Today, researchers know that some neutrophils can suppress the activity of T cells. And even if individual neutrophils are short-lived, collectively they can secrete chemical messages over a long timeframe. While the new paper doesn't explore precisely how neutrophils are interfering with the checkpoint inhibitors, Houghton said, the link is clear.

"This ratio of neutrophils and T cells accurately tells you who's going to respond or not," he said. "As far as we know, this is the first time anybody has shown neutrophils contribute to (checkpoint inhibitor) treatment failure."

The researchers hope that knowledge could translate to better outcomes in patients. Houghton plans to launch a clinical trial combining the neutrophil-blocking drug with checkpoint inhibitors as part of the Fred Hutch Lung Specialized Project of Research Excellence.

And they will continue to search for markers that can predict whether immunotherapy is likely to help a given patient. Being able to sort patients by their cellular signature could help doctors pick the right treatment and avoid toxicities in people unlikely to benefit from the drug, Houghton said.

"This idea of personalized immunotherapy isn't here yet," Houghton said. "But knowing which of these subtypes a patient falls into would, in the future, allow for more targeted studies and treatments. We're trying to take steps in that direction."
-end-
This work was supported by grants from the National Institutes of Health (R01CA223191 and P50CA228944) and the Seattle Translational Tumor Research program.

Fred Hutchinson Cancer Research Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.