Nav: Home

No storm in a teacup -- it's a cyclone on a silicon chip

December 19, 2019

University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Professor Warwick Bowen, from UQ's Precision Sensing Initiative and the Australian Research Council Centre of Excellence for Engineered Quantum Systems said the finding was "a significant advance" and provided a new way to study turbulence.

"Turbulence is often described as the oldest unsolved problem in physics," Professor Bowen said.

"Our finding allows us to observe nanoscale quantum turbulence, which mirrors the sort of behaviour you see in cyclones.

Artists' impression of quantum vortices in a liquid. These are the quantum equivalent of vortices in water or a tornado. Their interactions cause dynamics analogous to that of a cyclone. Image: Christopher Baker"This advance is enabled by the properties of quantum liquids, which are fundamentally different to everyday liquids."

Professor Bowen said it was postulated more than 50 years ago that the turbulence problem could be simplified using quantum liquids.

"Our new technique is exciting because it allows quantum turbulence to be studied on a silicon chip for the first time," he said.

The research also had implications in space, where quantum liquids are predicted to exist within dense astrophysical objects.

"Our research could help to explain how these objects behave," Dr Bowen said.

Dr Yauhen Sachkou, the paper's lead author, said rotating neutron stars lost angular momentum in fits and starts.

"The way this occurs is thought to hinge on quantum turbulence," Dr Sachkou said.

Dr Christopher Baker, who co-led the research, said the finding made possible silicon-chip based accelerometers with sensitivity far beyond current state of the art.

"In quantum liquids, atoms behave more like waves than particles," Dr Baker said.

"This allows us to build laser-like sensors from atoms."
-end-
The research was a collaboration between researchers in the ARC Centre of Excellence for Engineered Quantum Systems (EQUS) and ARC Centre of Excellence in Future Low-Energy Electronic Technologies (FLEET) in Australia, and the Dodd-Walls Centre for Photonic and Quantum Technologies in New Zealand. It was supported by the United States Army Research Office and the Australian Research Council, and was published today in Science.

University of Queensland

Related Cyclones Articles:

Stronger tropical cyclones strengthen the Kuroshio Current, further heating high latitudes
As the intensity and frequency of the strongest cyclones east of Taiwan have increased, so has the strength of the Kuroshio current, a Pacific current responsible for redistributing heat throughout the western North Pacific Ocean.
Cyclones can damage even distant reefs
Big and strong cyclones can harm coral reefs as far as 1000 kilometres away from their paths, new research shows.
NASA examines tropical storm Arthur's rainfall as it transitions
When the Global Precipitation Measurement mission or GPM core satellite passed over the western North Atlantic Ocean, it captured rainfall data on Tropical Storm Arthur as the storm was transitioning into an extra-tropical storm.
Study: Climate change has been influencing where tropical cyclones rage
While the global average number of tropical cyclones each year has not budged from 86 over the last four decades, climate change has been influencing the locations of where these deadly storms occur, according to new NOAA-led research published in Proceedings of the National Academy of Science.
Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.
Extra-tropical Cyclone Harold caught by NASA's Terra Satellite
NASA's Terra satellite passed over the Southern Pacific Ocean and captured a visible image of extra-tropical cyclone Harold.
NASA sees tropical cyclone Irondro developing an eye
As Tropical Cyclone Irondro continues to move through the Southern Indian Ocean, NASA's Terra satellite saw the storm developing an eye as it continued to intensify.
NASA analyzes tropical cyclone Herold's water vapor concentration
When NASA's Aqua satellite passed over the Southern Indian Ocean on Mar.
NASA finds Gretel becoming extra-tropical
NASA's Terra satellite passed over the Southern Pacific Ocean and captured an image of Tropical Storm Gretel as it was transitioning into an extra-tropical cyclone, northwest of New Zealand.
NASA measures rainfall rates in two American Samoa Tropical Cyclones
There are two tropical cyclones affecting American Samoa in the South Pacific Ocean on Feb.
More Cyclones News and Cyclones Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.