Nav: Home

No storm in a teacup -- it's a cyclone on a silicon chip

December 19, 2019

University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Professor Warwick Bowen, from UQ's Precision Sensing Initiative and the Australian Research Council Centre of Excellence for Engineered Quantum Systems said the finding was "a significant advance" and provided a new way to study turbulence.

"Turbulence is often described as the oldest unsolved problem in physics," Professor Bowen said.

"Our finding allows us to observe nanoscale quantum turbulence, which mirrors the sort of behaviour you see in cyclones.

Artists' impression of quantum vortices in a liquid. These are the quantum equivalent of vortices in water or a tornado. Their interactions cause dynamics analogous to that of a cyclone. Image: Christopher Baker"This advance is enabled by the properties of quantum liquids, which are fundamentally different to everyday liquids."

Professor Bowen said it was postulated more than 50 years ago that the turbulence problem could be simplified using quantum liquids.

"Our new technique is exciting because it allows quantum turbulence to be studied on a silicon chip for the first time," he said.

The research also had implications in space, where quantum liquids are predicted to exist within dense astrophysical objects.

"Our research could help to explain how these objects behave," Dr Bowen said.

Dr Yauhen Sachkou, the paper's lead author, said rotating neutron stars lost angular momentum in fits and starts.

"The way this occurs is thought to hinge on quantum turbulence," Dr Sachkou said.

Dr Christopher Baker, who co-led the research, said the finding made possible silicon-chip based accelerometers with sensitivity far beyond current state of the art.

"In quantum liquids, atoms behave more like waves than particles," Dr Baker said.

"This allows us to build laser-like sensors from atoms."
-end-
The research was a collaboration between researchers in the ARC Centre of Excellence for Engineered Quantum Systems (EQUS) and ARC Centre of Excellence in Future Low-Energy Electronic Technologies (FLEET) in Australia, and the Dodd-Walls Centre for Photonic and Quantum Technologies in New Zealand. It was supported by the United States Army Research Office and the Australian Research Council, and was published today in Science.

University of Queensland

Related Cyclones Articles:

NASA imagery reveals Kujira transitioning into an extratropical cyclone 
Tropical cyclones can become post-tropical before they dissipate, meaning they can become sub-tropical, extra-tropical or a remnant low-pressure area.
NASA satellite found Post-Tropical Storm Alpha fizzle over Portugal and Spain
Former Subtropical Storm Alpha was a short-lived storm that formed and fizzled within 24 hours.
Researchers find link between Atlantic hurricanes and weather system in East Asia
Climate researchers led by the University of Iowa have found a link between hurricanes that form in the Atlantic Ocean - and threaten the United States - and a weather system in East Asia.
HKBU research reveals greater flood risks in the coastal region of China
A research led by the Department of Geography at Hong Kong Baptist University (HKBU) has revealed that the observed average moving speed (or translation speed) of tropical cyclones making landfall over the coast of China dropped by 11% between 1961 and 2017.
Edouard now post-tropical in NASA-NOAA satellite imagery
When NASA-NOAA's Suomi NPP satellite passed over the western North Atlantic Ocean on July 6, it provided forecasters with a visible image of Edouard after it transitioned into a post-tropical cyclone.
NASA finds post-Tropical Cyclone Dolly exiting the tropical stage
NASA's Terra satellite provided a night-time look at what is now Post-Tropical Storm Dolly in the Northern Atlantic Ocean.
NASA analyzes the newest Atlantic Ocean subtropical depression
NASA's Aqua satellite used infrared light to analyze the strength of storms in the North Atlantic Ocean's newly formed Subtropical Depression 4.
Stronger tropical cyclones strengthen the Kuroshio Current, further heating high latitudes
As the intensity and frequency of the strongest cyclones east of Taiwan have increased, so has the strength of the Kuroshio current, a Pacific current responsible for redistributing heat throughout the western North Pacific Ocean.
Cyclones can damage even distant reefs
Big and strong cyclones can harm coral reefs as far as 1000 kilometres away from their paths, new research shows.
NASA examines tropical storm Arthur's rainfall as it transitions
When the Global Precipitation Measurement mission or GPM core satellite passed over the western North Atlantic Ocean, it captured rainfall data on Tropical Storm Arthur as the storm was transitioning into an extra-tropical storm.
More Cyclones News and Cyclones Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.