Why are alloy metal nanoparticles better than monometallic ones for CNT growth?

December 19, 2019

Researchers of the Center for Multidimensional Carbon Materials, within the Institute of Basic Science (IBS, South Korea), have presented a theoretical solution to a long-lasting mystery of carbon nanotubes (CNTs) growth. Published in Physical Review Letters, this study explains why nanoparticles made with an alloy of metals help to synthetize longer CNTs compared with conventional monometallic catalysts.

CNTs are tubular nanostructures made of carbon atoms with exciting potential properties that have kept researchers on the lookout for new advances. One of the most common methods to produce CNTs involves catalyst nanoparticles, which have the function of facilitating the addition of carbon atoms from precursor molecules to the walls of the cylinders. It is common knowledge in the field that alloy catalysts, like Ni-Y, Fe-Mo, Cu-Ni, and Co-Mo, outperform other single metal catalysts, but the reason has been unclear.

IBS researchers performed a systematic molecular dynamics simulation to explore the role of alloy catalysts in CNT growth. "In a molecular dynamics simulation, the motion of every atom can be clearly seen and, therefore, the variation of the shape and structure of the catalyst particle during the carbon nanotube growth can be recorded precisely. This allows us to go beyond the capacity of the best experimental methods." explains Feng Ding, a group leader of the Center and corresponding author of the study.

Through the molecular dynamic simulations, the authors have found that the two metals of the alloy are spatially separated at the rim of the tubes: CNTs tend to attract the more active metal atoms to the open end of the cylinders (growth front), where carbon atoms are inserted into the CNT wall during growth, while the less active metal atoms are pushed above. More simulations show that this is a general phenomenon and can be applied to many types of alloy catalysts.

IBS researchers have also demonstrated that alloy catalysts win over monometallic nanoparticles because the active metal atoms near the rim of the CNT catch the carbon atoms more easily than the less active ones. This will lead to a larger carbon concentration at the vicinal of CNT growth front and a quick addition of the carbon atoms, which contribute to the fast growth of the CNT.

Since the carbon atoms are continuously incorporated to the growing CNTs, the carbon precursors do not accumulate around the alloy nanoparticles. This prevents the formation of a cap made of carbon atoms engulfing the entire nanoparticle.

"This theoretical study addresses a long-term puzzle of the role of the alloy catalysts in carbon nanotube growth. It reveals the advantage of using alloy catalysts in carbon nanotube growth, and the contact-induced phase separation of the alloy catalyst can be considered as a general rule to guide catalyst design for controllable carbon nanotube growth," says Lu Qiu, the first author of the study.
-end-


Institute for Basic Science

Related Metals Articles from Brightsurf:

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'.

Discovery of large family of two-dimensional ferroelectric metals
Recently, a team from University of Chinese Academy of Sciences, led by Prof.

Electrons obey social distancing in 'strange' metals
A Cornell University-led collaboration has used state-of-the-art computational tools to model the chaotic behavior of Planckian, or ''strange,'' metals.

APS tip sheet: Ultimate strength of metals
A new model is able to accurately determine the peak strength of polycrystalline metals.

Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

New quantum switch turns metals into insulators
Researchers at the University of British Columbia have demonstrated an entirely new way to precisely control electrical currents by leveraging the interaction between an electron's spin and its orbital rotation around the nucleus.

A new look at 'strange metals'
'Strange metals' could be the key to finally understanding high-temperature superconductors.

Stellar heavy metals can trace history of galaxies
Astronomers have cataloged signs of nine heavy metals in the infrared light from supergiant and giant stars.

Surface effects affect the distribution of hydrogen in metals
The researchers from Peter the Great St.Petersburg Polytechnic University and Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences studied the distribution of hydrogen in metals in the process of standard testing for hydrogen cracking.

Read More: Metals News and Metals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.