Nav: Home

New liquid metal wearable pressure sensor created for health monitoring applications

December 19, 2019

Soft pressure sensors have received significant research attention in a variety of fields, including soft robotics, electronic skin, and wearable electronics. Wearable soft pressure sensors have great potential for the real-time health monitoring and for the early diagnosis of diseases.

A KAIST research team led by Professor Inkyu Park from the Department of Mechanical Engineering developed a highly sensitive wearable pressure sensor for health monitoring applications. This work was reported in Advanced Healthcare Materials on November 21 as a front cover article.

This technology is capable of sensitive, precise, and continuous measurement of physiological and physical signals and shows great potential for health monitoring applications and the early diagnosis of diseases.

A soft pressure sensor is required to have high compliance, high sensitivity, low cost, long-term performance stability, and environmental stability in order to be employed for continuous health monitoring. Conventional solid-state soft pressure sensors using functional materials including carbon nanotubes and graphene have showed great sensing performance. However, these sensors suffer from limited stretchability, signal drifting, and long-term instability due to the distance between the stretchable substrate and the functional materials.

To overcome these issues, liquid-state electronics using liquid metal have been introduced for various wearable applications. Of these materials, Galinstan, a eutectic metal alloy of gallium, indium, and tin, has great mechanical and electrical properties that can be employed in wearable applications. But today's liquid metal-based pressure sensors have low-pressure sensitivity, limiting their applicability for health monitoring devices.

The research team developed a 3D-printed rigid microbump array-integrated, liquid metal-based soft pressure sensor. With the help of 3D printing, the integration of a rigid microbump array and the master mold for a liquid metal microchannel could be achieved simultaneously, reducing the complexity of the manufacturing process. Through the integration of the rigid microbump and the microchannel, the new pressure sensor has an extremely low detection limit and enhanced pressure sensitivity compared to previously reported liquid metal-based pressure sensors. The proposed sensor also has a negligible signal drift over 10,000 cycles of pressure, bending, and stretching and exhibited excellent stability when subjected to various environmental conditions.

These performance outcomes make it an excellent sensor for various health monitoring devices. First, the research team demonstrated a wearable wristband device that can continuously monitor one's pulse during exercise and be employed in a noninvasive cuffless BP monitoring system based on PTT calculations. Then, they introduced a wireless wearable heel pressure monitoring system that integrates three 3D-BLiPS with a wireless communication module.

Professor Park said, "It was possible to measure health indicators including pulse and blood pressure continuously as well as pressure of body parts using our proposed soft pressure sensor. We expect it to be used in health care applications, such as the prevention and the monitoring of the pressure-driven diseases such as pressure ulcers in the near future. There will be more opportunities for future research including a whole-body pressure monitoring system related to other physical parameters."
-end-
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT.

Profile: Prof. Inkyu Park
inkyu@kaist.ac.kr
Micro/Nano Transducers Laboratory
http://mintlab1.kaist.ac.kr/
Department of Mechanical Engineering
KAIST

About KAIST

KAIST is the first and top science and technology university in Korea. KAIST was established in 1971 by the Korean government to educate scientists and engineers committed to industrialization and economic growth in Korea.

Since then, KAIST and its 61,125 graduates have been the gateway to advanced science and technology, innovation, and entrepreneurship. KAIST has emerged as one of the most innovative universities with more than 12,000 students enrolled in five colleges and seven schools including 1,000 international students from 80 countries.

On the precipice of its 50th anniversary in 2021, KAIST continues to strive to make the world better through the pursuit in education, research, entrepreneurship, and globalization.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Liquid Metal Articles:

How is a metal formed?
Metal is characterized by free electrons which give rise to its high electric conductivity.
Liquid metal research invokes 'Terminator' film -- but much friendlier
Researchers at Binghamton University, State University of New York have developed 'the first liquid metal lattice in the world.' The team has created a series of prototypes that return to their shapes when crushed.
Scientists discover just how runny a liquid can be
Scientists from Queen Mary University of London and the Russian Academy of Sciences have found a limit to how runny a liquid can be.
Mechanism of controlling autophagy by liquid-liquid phase separation revealed
Japanese scientists elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro.
But what about flow? The effect of hydrodynamics on liquid-liquid transitions
The University of Tokyo Institute of Industrial Science researchers modeled the role of hydrodynamics in liquid-liquid transitions of a single-component system.
First view of hydrogen at the metal-to-metal hydride interface
University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope.
Discovery of a new liquid-liquid interfacial deformation by partial miscibility
The international collaborative team has discovered for the first time in the scientific development that ''partially miscibility'', in which the two liquids do not mix completely with finite solubility, is capable of deforming the liquid-liquid interface.
A solid vaccine for liquid tumors
Acute myeloid leukemia (AML) is a deadly blood cancer that kills most of its victims within five years.
New liquid metal wearable pressure sensor created for health monitoring applications
A KAIST research team developed a highly sensitive wearable pressure sensor for health monitoring applications.
Liquid-liquid transitions crystallize new ideas for molecular liquids
Researchers from The University of Tokyo, Institute of Industrial Science, and Tokyo Metropolitan University experimentally demonstrated that liquid-liquid transitions of a molecular liquid were coupled to crystallization behavior.
More Liquid Metal News and Liquid Metal Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.